Tau functions of solutions of soliton equations

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Domrin
{"title":"Tau functions of solutions of soliton equations","authors":"A. Domrin","doi":"10.1070/IM9058","DOIUrl":null,"url":null,"abstract":"In the holomorphic version of the inverse scattering method, we prove that the determinant of a Toeplitz-type Fredholm operator arising in the solution of the inverse problem is an entire function of the spatial variable for all potentials whose scattering data belong to a Gevrey class strictly less than 1. As a corollary, we establish that, up to a constant factor, every local holomorphic solution of the Korteweg–de Vries equation is the second logarithmic derivative of an entire function of the spatial variable. We discuss the possible order of growth of this entire function. Analogous results are given for all soliton equations of parabolic type.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"367 - 387"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9058","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In the holomorphic version of the inverse scattering method, we prove that the determinant of a Toeplitz-type Fredholm operator arising in the solution of the inverse problem is an entire function of the spatial variable for all potentials whose scattering data belong to a Gevrey class strictly less than 1. As a corollary, we establish that, up to a constant factor, every local holomorphic solution of the Korteweg–de Vries equation is the second logarithmic derivative of an entire function of the spatial variable. We discuss the possible order of growth of this entire function. Analogous results are given for all soliton equations of parabolic type.
孤子方程解的函数
在反散射方法的全纯版本中,我们证明了反问题解中出现的toeplitz型Fredholm算子的行列式是所有散射数据属于严格小于1的Gevrey类的势的空间变量的完整函数。作为推论,我们建立了Korteweg-de Vries方程的每一个局部全纯解都是空间变量的整个函数的二次对数导数,直到一个常数因子。我们讨论了整个函数可能的增长阶数。给出了所有抛物型孤子方程的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信