Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in

IF 0.8 3区 数学 Q2 MATHEMATICS
M. Mazalov
{"title":"Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in","authors":"M. Mazalov","doi":"10.1070/IM9027","DOIUrl":null,"url":null,"abstract":"We obtain a criterion for the uniform approximability of functions by solutions of second-order homogeneous strongly elliptic equations with constant complex coefficients on compact sets in (the particular case of harmonic approximations is not distinguished). The criterion is stated in terms of the unique (scalar) Harvey–Polking capacity related to the leading coefficient of a Laurent-type expansion (this capacity is trivial in the well-studied case of non-strongly elliptic equations). The proof uses an improvement of Vitushkin’s scheme, special geometric constructions, and methods of the theory of singular integrals. In view of the inhomogeneity of the fundamental solutions of strongly elliptic operators on , the problem considered is technically more difficult than the analogous problem for , 2$?> .","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"85 1","pages":"421 - 456"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/IM9027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We obtain a criterion for the uniform approximability of functions by solutions of second-order homogeneous strongly elliptic equations with constant complex coefficients on compact sets in (the particular case of harmonic approximations is not distinguished). The criterion is stated in terms of the unique (scalar) Harvey–Polking capacity related to the leading coefficient of a Laurent-type expansion (this capacity is trivial in the well-studied case of non-strongly elliptic equations). The proof uses an improvement of Vitushkin’s scheme, special geometric constructions, and methods of the theory of singular integrals. In view of the inhomogeneity of the fundamental solutions of strongly elliptic operators on , the problem considered is technically more difficult than the analogous problem for , 2$?> .
中的紧集上二阶齐次强椭圆方程解的函数一致逼近
我们得到了紧集上二阶齐次常复系数强椭圆方程解的函数一致逼近的一个判据(调和逼近的特殊情况不作区分)。该准则是用与洛朗型展开的领先系数相关的唯一(标量)Harvey-Polking容量来表述的(这种容量在研究得很好的非强椭圆方程的情况下是微不足道的)。这个证明使用了对维图什金方案的改进,特殊的几何结构和奇异积分理论的方法。考虑到上强椭圆算子基本解的非齐次性,所考虑的问题在技术上要比在2$?>。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信