The hindered rotor theory: A review

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eugenia Dzib, Gabriel Merino
{"title":"The hindered rotor theory: A review","authors":"Eugenia Dzib,&nbsp;Gabriel Merino","doi":"10.1002/wcms.1583","DOIUrl":null,"url":null,"abstract":"<p>Hindered rotations are common in nature and can greatly affect thermodynamic properties. Typically, the standard rigid-rotor harmonic-oscillator approximation is used to compute thermodynamic properties; however, it often leads to serious errors, particularly for molecules with hindered rotations. Hence, to reach accurate thermodynamic predictions for such cases, the hindered rotor approximation must be applied. Different methods to compute thermodynamic properties for molecules with hindered rotations are available. Herein, we review the theoretical basis of different methods, their accuracy, and applicability. We also present the different algorithms to identify hindered rotors and obtain the input parameters for the hindered rotor model, and the software available to compute thermodynamic properties under this scheme.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"12 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

Hindered rotations are common in nature and can greatly affect thermodynamic properties. Typically, the standard rigid-rotor harmonic-oscillator approximation is used to compute thermodynamic properties; however, it often leads to serious errors, particularly for molecules with hindered rotations. Hence, to reach accurate thermodynamic predictions for such cases, the hindered rotor approximation must be applied. Different methods to compute thermodynamic properties for molecules with hindered rotations are available. Herein, we review the theoretical basis of different methods, their accuracy, and applicability. We also present the different algorithms to identify hindered rotors and obtain the input parameters for the hindered rotor model, and the software available to compute thermodynamic properties under this scheme.

This article is categorized under:

Abstract Image

受阻转子理论综述
受阻旋转在自然界中很常见,并且会极大地影响热力学性质。通常,标准刚性转子谐振子近似用于计算热力学性质;然而,它经常导致严重的错误,特别是对于旋转受阻的分子。因此,为了达到准确的热力学预测,这种情况下,受阻转子近似必须应用。不同的方法来计算热力学性质的分子阻碍旋转是可用的。本文综述了不同方法的理论基础、准确性和适用性。本文还介绍了识别受阻转子和获取受阻转子模型输入参数的不同算法,以及可用于计算该方案下的热力学性质的软件。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信