Creep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials

M. Vandamme, Z. Bažant, S. Keten
{"title":"Creep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials","authors":"M. Vandamme, Z. Bažant, S. Keten","doi":"10.1061/(ASCE)NM.2153-5477.0000102","DOIUrl":null,"url":null,"abstract":"AbstractA variety of geomaterials, such as cementitious or clay-based materials, has on the nano-scale a layered microstructure that can contain fluid in its nano-porous space. The creep of such nano-scale basic units is what causes the macroscopic creep. Here, one nano-pore whose walls consist of two parallel infinite solid layers interacting through Lennard-Jones potential is studied. The authors evaluate numerically the energy barriers that such a system needs to overcome for the two solid layers to slide over each other and show how this sliding depends on the longitudinal and transverse forces applied to the layers. The energy barriers translate into a dependence of the apparent viscosity of the system on the disjoining pressure in a manner consistent with the microprestress theory. This result makes it possible to explain why the longtime creep of cementitious materials is logarithmic. The experimental data on how the long-term logarithmic creep of cementitious materials depends on the temperature a...","PeriodicalId":90606,"journal":{"name":"Journal of nanomechanics & micromechanics","volume":"5 1","pages":"04015002"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1061/(ASCE)NM.2153-5477.0000102","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanomechanics & micromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)NM.2153-5477.0000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

AbstractA variety of geomaterials, such as cementitious or clay-based materials, has on the nano-scale a layered microstructure that can contain fluid in its nano-porous space. The creep of such nano-scale basic units is what causes the macroscopic creep. Here, one nano-pore whose walls consist of two parallel infinite solid layers interacting through Lennard-Jones potential is studied. The authors evaluate numerically the energy barriers that such a system needs to overcome for the two solid layers to slide over each other and show how this sliding depends on the longitudinal and transverse forces applied to the layers. The energy barriers translate into a dependence of the apparent viscosity of the system on the disjoining pressure in a manner consistent with the microprestress theory. This result makes it possible to explain why the longtime creep of cementitious materials is logarithmic. The experimental data on how the long-term logarithmic creep of cementitious materials depends on the temperature a...
润滑层状纳米多孔固体的蠕变及其在胶凝材料中的应用
各种岩土材料,如胶凝材料或粘土基材料,在纳米尺度上具有层状微观结构,其纳米多孔空间可以容纳流体。这种纳米尺度基本单元的蠕变是造成宏观蠕变的原因。本文研究了一个纳米孔,其壁由两个平行的无限固体层组成,通过Lennard-Jones势相互作用。作者用数值方法评估了这样一个系统需要克服的能量障碍,以使两个固体层相互滑动,并展示了这种滑动是如何取决于施加在层上的纵向和横向力的。能量势垒转化为体系表观粘度对分离压力的依赖关系,与微预应力理论一致。这一结果可以解释为什么胶凝材料的长期蠕变是对数的。本文给出了胶凝材料长期对数蠕变随温度变化的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信