Ofir Harari, Mohsen Soltanifar, Joseph C. Cappelleri, Andre Verhoek, Mario Ouwens, Caitlin Daly, Bart Heeg
{"title":"Network meta-interpolation: Effect modification adjustment in network meta-analysis using subgroup analyses","authors":"Ofir Harari, Mohsen Soltanifar, Joseph C. Cappelleri, Andre Verhoek, Mario Ouwens, Caitlin Daly, Bart Heeg","doi":"10.1002/jrsm.1608","DOIUrl":null,"url":null,"abstract":"<p>Effect modification (EM) may cause bias in network meta-analysis (NMA). Existing population adjustment NMA methods use individual patient data to adjust for EM but disregard available subgroup information from aggregated data in the evidence network. Additionally, these methods often rely on the shared effect modification (SEM) assumption. In this paper, we propose Network Meta-Interpolation (NMI): a method using subgroup analyses to adjust for EM that does not assume SEM. NMI balances effect modifiers across studies by turning treatment effect (TE) estimates at the subgroup- and study level into TE and standard errors at EM values common to all studies. In an extensive simulation study, we simulate two evidence networks consisting of four treatments, and assess the impact of departure from the SEM assumption, variable EM correlation across trials, trial sample size and network size. NMI was compared to standard NMA, network meta-regression (NMR) and Multilevel NMR (ML-NMR) in terms of estimation accuracy and credible interval (CrI) coverage. In the base case non-SEM dataset, NMI achieved the highest estimation accuracy with root mean squared error (RMSE) of 0.228, followed by standard NMA (0.241), ML-NMR (0.447) and NMR (0.541). In the SEM dataset, NMI was again the most accurate method with RMSE of 0.222, followed by ML-NMR (0.255). CrI coverage followed a similar pattern. NMI's dominance in terms of estimation accuracy and CrI coverage appeared to be consistent across all scenarios. NMI represents an effective option for NMA in the presence of study imbalance and available subgroup data.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"14 2","pages":"211-233"},"PeriodicalIF":5.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1608","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1608","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Effect modification (EM) may cause bias in network meta-analysis (NMA). Existing population adjustment NMA methods use individual patient data to adjust for EM but disregard available subgroup information from aggregated data in the evidence network. Additionally, these methods often rely on the shared effect modification (SEM) assumption. In this paper, we propose Network Meta-Interpolation (NMI): a method using subgroup analyses to adjust for EM that does not assume SEM. NMI balances effect modifiers across studies by turning treatment effect (TE) estimates at the subgroup- and study level into TE and standard errors at EM values common to all studies. In an extensive simulation study, we simulate two evidence networks consisting of four treatments, and assess the impact of departure from the SEM assumption, variable EM correlation across trials, trial sample size and network size. NMI was compared to standard NMA, network meta-regression (NMR) and Multilevel NMR (ML-NMR) in terms of estimation accuracy and credible interval (CrI) coverage. In the base case non-SEM dataset, NMI achieved the highest estimation accuracy with root mean squared error (RMSE) of 0.228, followed by standard NMA (0.241), ML-NMR (0.447) and NMR (0.541). In the SEM dataset, NMI was again the most accurate method with RMSE of 0.222, followed by ML-NMR (0.255). CrI coverage followed a similar pattern. NMI's dominance in terms of estimation accuracy and CrI coverage appeared to be consistent across all scenarios. NMI represents an effective option for NMA in the presence of study imbalance and available subgroup data.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.