{"title":"Integration of digital imagery for topology optimization","authors":"Z. Atmani, Alexis Iung, J. Radoux, N. Lebaal","doi":"10.1051/smdo/2023004","DOIUrl":null,"url":null,"abstract":"To manufacture high-quality products with low manufacturing costs and optimal performance, better design concepts are required. The initial design concept can lead to inefficient structural design and higher manufacturing costs if the topology is not optimal. Topology optimization enables designers to reach their design goals faster, more accurately, and cost-effectively. However, the geometry obtained through topology optimization is not manufacturing-ready due to non-smooth boundaries and gray level images, which require post-processing design implementation by engineers. Various researchers have used different image processing techniques to convert the gray image into a binary map to address this issue. This paper focuses on using image processing to evaluate the differences in optimal designs induced by meshing. This study aims to aid in the parametric understanding of different designs targeting the same application by introducing two new parameters: similarity ratio and conformity ratio. The results compare an optimal geometry obtained using structured and unstructured meshes. Topological optimization algorithms applied to mechanical problems allow for reducing a structure's mass while ensuring its rigidity. However, the final structures may differ for the same problem depending on whether they were meshed regularly or irregularly. This article characterizes the differences between the two final structures using an image processing approach.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
To manufacture high-quality products with low manufacturing costs and optimal performance, better design concepts are required. The initial design concept can lead to inefficient structural design and higher manufacturing costs if the topology is not optimal. Topology optimization enables designers to reach their design goals faster, more accurately, and cost-effectively. However, the geometry obtained through topology optimization is not manufacturing-ready due to non-smooth boundaries and gray level images, which require post-processing design implementation by engineers. Various researchers have used different image processing techniques to convert the gray image into a binary map to address this issue. This paper focuses on using image processing to evaluate the differences in optimal designs induced by meshing. This study aims to aid in the parametric understanding of different designs targeting the same application by introducing two new parameters: similarity ratio and conformity ratio. The results compare an optimal geometry obtained using structured and unstructured meshes. Topological optimization algorithms applied to mechanical problems allow for reducing a structure's mass while ensuring its rigidity. However, the final structures may differ for the same problem depending on whether they were meshed regularly or irregularly. This article characterizes the differences between the two final structures using an image processing approach.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).