Numerical study of new techniques drag reduction: application to aerodynamic devices

Q3 Mathematics
A. Agriss, M. Agouzoul, A. Ettaouil, Abdessamad Mehdari
{"title":"Numerical study of new techniques drag reduction: application to aerodynamic devices","authors":"A. Agriss, M. Agouzoul, A. Ettaouil, Abdessamad Mehdari","doi":"10.1051/smdo/2021015","DOIUrl":null,"url":null,"abstract":"In the present study, new drag reduction techniques applied to aerodynamic structures have been developed. The test cases have been numerically performed using three simplified models. Simulations have been performed by using the CFD software Ansys fluent. The first case deals with a laminar flow over a flat plate. Drag reduction is obtained by corrugating the shape of the plate. The second case treats a laminar flow over a NACA 0012 airfoil. By the addition of a device fixed on the flow separation point, the drag could be reduced. The last case concerns a turbulent flow over the Ahmed body. Drag reduction is obtained by the perforation of a conduit leading a part of the flow from the front to be injected at the rear of the body.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In the present study, new drag reduction techniques applied to aerodynamic structures have been developed. The test cases have been numerically performed using three simplified models. Simulations have been performed by using the CFD software Ansys fluent. The first case deals with a laminar flow over a flat plate. Drag reduction is obtained by corrugating the shape of the plate. The second case treats a laminar flow over a NACA 0012 airfoil. By the addition of a device fixed on the flow separation point, the drag could be reduced. The last case concerns a turbulent flow over the Ahmed body. Drag reduction is obtained by the perforation of a conduit leading a part of the flow from the front to be injected at the rear of the body.
减阻新技术的数值研究:在气动装置上的应用
在目前的研究中,开发了应用于气动结构的新的减阻技术。使用三个简化模型对测试用例进行了数值模拟。利用CFD软件Ansys fluent进行了仿真。第一种情况是处理平板上的层流。阻力的减少是通过波纹板的形状获得的。第二个案例处理层流在NACA 0012翼型。通过在流动分离点增设固定装置,可以减小阻力。最后一个案例涉及艾哈迈德尸体上的湍流。阻力的减少是通过导管穿孔来实现的,该导管将前部的一部分气流注入到阀体后部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信