Current correction and fuzzy logic optimizations of Perturb & Observe MPPT technique in photovoltaic panel

Q3 Mathematics
M. Ourahou, W. Ayrir, A. Haddi
{"title":"Current correction and fuzzy logic optimizations of Perturb & Observe MPPT technique in photovoltaic panel","authors":"M. Ourahou, W. Ayrir, A. Haddi","doi":"10.1051/SMDO/2019007","DOIUrl":null,"url":null,"abstract":"This paper presents a two-way optimization of the Perturb & Observe (P&O) maximum power point tracking (MPPT) technique using current correction and fuzzy logic techniques. In fact, photovoltaic (PV) energy has become more and more coveted today. In the future, it will become a necessity. To ensure its optimization, maximum operating point tracking method is considered as a technological key in PV systems. One of the most used MPPT methods is the P&O technique. In this paper, we will focus on optimizing this method based on two techniques. A first attempt has been made to estimate a current correction of the P&O algorithm in case of illumination variation. Then, fuzzy logic optimization attempt had been highlighted to improve power loss. It is shown that both proposed techniques are very effective and allow considerable improvement of accuracy and are less affected by sudden variation of climatic parameters. The proposed approaches are tested via Matlab software and compared the classical P&O algorithm. Through applications, we could conclude that the two optimized proposed methods offer a remarkable improvement concerning power losses.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/SMDO/2019007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/SMDO/2019007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a two-way optimization of the Perturb & Observe (P&O) maximum power point tracking (MPPT) technique using current correction and fuzzy logic techniques. In fact, photovoltaic (PV) energy has become more and more coveted today. In the future, it will become a necessity. To ensure its optimization, maximum operating point tracking method is considered as a technological key in PV systems. One of the most used MPPT methods is the P&O technique. In this paper, we will focus on optimizing this method based on two techniques. A first attempt has been made to estimate a current correction of the P&O algorithm in case of illumination variation. Then, fuzzy logic optimization attempt had been highlighted to improve power loss. It is shown that both proposed techniques are very effective and allow considerable improvement of accuracy and are less affected by sudden variation of climatic parameters. The proposed approaches are tested via Matlab software and compared the classical P&O algorithm. Through applications, we could conclude that the two optimized proposed methods offer a remarkable improvement concerning power losses.
光伏板中Perturb & Observe MPPT技术的电流校正及模糊逻辑优化
本文利用电流校正和模糊逻辑技术对扰动与观测(P&O)最大功率点跟踪(MPPT)技术进行了双向优化。事实上,光伏(PV)能源在今天已经变得越来越令人垂涎。在未来,它将成为一种必需品。为了保证光伏系统的优化,最大工作点跟踪方法是光伏系统的技术关键。最常用的MPPT方法之一是P&O技术。在本文中,我们将重点基于两种技术对该方法进行优化。本文首次尝试了在光照变化情况下P&O算法的当前修正量。然后,强调了模糊逻辑优化的尝试,以提高功耗。结果表明,这两种方法都是非常有效的,可以大大提高精度,而且受气候参数突然变化的影响较小。通过Matlab软件对所提方法进行了测试,并与经典P&O算法进行了比较。通过应用,我们可以得出结论,两种优化提出的方法在功率损耗方面有显着的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信