Industry 4.0: a systematic review of legacy manufacturing system digital retrofitting

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Abdulrahman Alqoud, D. Schaefer, J. Milisavljevic-Syed
{"title":"Industry 4.0: a systematic review of legacy manufacturing system digital retrofitting","authors":"Abdulrahman Alqoud, D. Schaefer, J. Milisavljevic-Syed","doi":"10.1051/mfreview/2022031","DOIUrl":null,"url":null,"abstract":"Industry 4.0 technologies and digitalised processes are essential for implementing smart manufacturing within vertically and horizontally integrated production environments. These technologies offer new ways to generate revenue from data-driven services and enable predictive maintenance based on real-time data analytics. They also provide autonomous manufacturing scheduling and resource allocation facilitated by cloud computing technologies and the industrial Internet of Things (IoT). Although the fourth industrial revolution has been underway for more than a decade, the manufacturing sector is still grappling with the process of upgrading manufacturing systems and processes to Industry 4.0-conforming technologies and standards. Small and medium enterprises (SMEs) in particular, cannot always afford to replace their legacy systems with state-of-the-art machines but must look for financially viable alternatives. One such alternative is retrofitting, whereby old manufacturing systems are upgraded with sensors and IoT components to integrate them into a digital workflows across an enterprise. Unfortunately, to date, the scope and systematic process of legacy system retrofitting, and integration are not well understood and currently represent a large gap in the literature. In this article, the authors present an in-depth systematic review of case studies and available literature on legacy system retrofitting. A total of 32 papers met the selection criteria and were particularly relevant to the topic. Three digital retrofitting approaches are identified and compared. The results include insights common technologies used in retrofitting, hardware and software components typically required, and suitable communication protocols for establishing interoperability across the enterprise. These form an initial basis for a theoretical decision-making framework and associated retrofitting guide tool to be developed.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

Abstract

Industry 4.0 technologies and digitalised processes are essential for implementing smart manufacturing within vertically and horizontally integrated production environments. These technologies offer new ways to generate revenue from data-driven services and enable predictive maintenance based on real-time data analytics. They also provide autonomous manufacturing scheduling and resource allocation facilitated by cloud computing technologies and the industrial Internet of Things (IoT). Although the fourth industrial revolution has been underway for more than a decade, the manufacturing sector is still grappling with the process of upgrading manufacturing systems and processes to Industry 4.0-conforming technologies and standards. Small and medium enterprises (SMEs) in particular, cannot always afford to replace their legacy systems with state-of-the-art machines but must look for financially viable alternatives. One such alternative is retrofitting, whereby old manufacturing systems are upgraded with sensors and IoT components to integrate them into a digital workflows across an enterprise. Unfortunately, to date, the scope and systematic process of legacy system retrofitting, and integration are not well understood and currently represent a large gap in the literature. In this article, the authors present an in-depth systematic review of case studies and available literature on legacy system retrofitting. A total of 32 papers met the selection criteria and were particularly relevant to the topic. Three digital retrofitting approaches are identified and compared. The results include insights common technologies used in retrofitting, hardware and software components typically required, and suitable communication protocols for establishing interoperability across the enterprise. These form an initial basis for a theoretical decision-making framework and associated retrofitting guide tool to be developed.
工业4.0:遗留制造系统数字化改造的系统回顾
工业4.0技术和数字化流程对于在垂直和水平集成的生产环境中实施智能制造至关重要。这些技术为从数据驱动服务中获取收入提供了新的途径,并实现了基于实时数据分析的预测性维护。它们还通过云计算技术和工业物联网(IoT)提供自主制造调度和资源分配。尽管第四次工业革命已经进行了十多年,但制造业仍在努力将制造系统和流程升级到符合工业4.0的技术和标准。特别是中小型企业(SMEs),不能总是负担得起用最先进的机器替换其遗留系统的费用,而必须寻找经济上可行的替代方案。其中一种替代方案是改造,即用传感器和物联网组件升级旧的制造系统,将其集成到整个企业的数字工作流程中。不幸的是,到目前为止,遗留系统改造和集成的范围和系统过程还没有得到很好的理解,目前在文献中表现出很大的差距。在这篇文章中,作者对遗留系统改造的案例研究和现有文献进行了深入的系统回顾。共有32篇论文符合选择标准,并且与主题特别相关。确定并比较了三种数字化改造方法。结果包括在改造中使用的常见技术、通常需要的硬件和软件组件,以及用于建立跨企业互操作性的合适通信协议。这些构成了理论决策框架和相关改造指导工具的初步基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信