Application of vibration singularity analysis, stochastic tool wear, and GPR-MOPSO hybrid algorithm to monitor and optimise power consumption in high-speed milling
D. Hoang Tien, Tran Duc Quy, Thoa Pham Thi Thieu, N. D. Trinh
{"title":"Application of vibration singularity analysis, stochastic tool wear, and GPR-MOPSO hybrid algorithm to monitor and optimise power consumption in high-speed milling","authors":"D. Hoang Tien, Tran Duc Quy, Thoa Pham Thi Thieu, N. D. Trinh","doi":"10.1051/mfreview/2022012","DOIUrl":null,"url":null,"abstract":"Power consumption in manufacturing direct affects production costs and the environment. Therefore, the process of evaluating and researching power consumption in the machining process is very important. During high-speed milling, the power consumption varie`s due to tool wear and radial deviation. Therefore, a new model power consumption optimization is proposed based on cutting mode factors taking into account tool wear and radial deviation. In the existing power consumption models, studies on the effects of radial deviation and tool wear have not been thoroughly investigated. Stochastic tool wears established during high-speed milling is established in combination with the cutting force analysis model and wavelet singularity vibration point analysis. The nonlinear processes due to stochastic tool wear and cutting edge geometry were considered in the model. To optimize power consumption and establish a model for the real-time prediction of power consumption, a new GPR–MOPSO hybrid algorithm was developed based on Gaussian process regression (GPR) and multi-objective particle swarm optimizations (MOPSO). In order to verify the feasibility proposed monitoring and optimization model, experimental processes high-speed milling have been established. Results showed that the presented improvement model will reduce power consumption by 20.38% compared with manufacturer manuals chosen process parameters.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Power consumption in manufacturing direct affects production costs and the environment. Therefore, the process of evaluating and researching power consumption in the machining process is very important. During high-speed milling, the power consumption varie`s due to tool wear and radial deviation. Therefore, a new model power consumption optimization is proposed based on cutting mode factors taking into account tool wear and radial deviation. In the existing power consumption models, studies on the effects of radial deviation and tool wear have not been thoroughly investigated. Stochastic tool wears established during high-speed milling is established in combination with the cutting force analysis model and wavelet singularity vibration point analysis. The nonlinear processes due to stochastic tool wear and cutting edge geometry were considered in the model. To optimize power consumption and establish a model for the real-time prediction of power consumption, a new GPR–MOPSO hybrid algorithm was developed based on Gaussian process regression (GPR) and multi-objective particle swarm optimizations (MOPSO). In order to verify the feasibility proposed monitoring and optimization model, experimental processes high-speed milling have been established. Results showed that the presented improvement model will reduce power consumption by 20.38% compared with manufacturer manuals chosen process parameters.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.