Microstructure and magnetic properties of Mn-Al-C permanent magnets produced by various techniques

IF 1.9 Q3 ENGINEERING, MANUFACTURING
V. Popov, F. Maccari, I. Radulov, A. Kovalevsky, A. Katz-Demyanetz, M. Bamberger
{"title":"Microstructure and magnetic properties of Mn-Al-C permanent magnets produced by various techniques","authors":"V. Popov, F. Maccari, I. Radulov, A. Kovalevsky, A. Katz-Demyanetz, M. Bamberger","doi":"10.1051/MFREVIEW/2021008","DOIUrl":null,"url":null,"abstract":"Bulk Mn52Al46C2 in τ-phase was prepared by vacuum induction melting and used as precursor for the production bulk permanent magnets by suction casting and hot-extrusion. Part of the precursor alloy was mechanically milled into a τ-phase powder and used as precursor for production of samples by electron beam melting, hot-compaction and high pressure torsion processes. The microstructure and magnetic properties of all samples were investigated and correlated. It was found that the mechanical deformation enhances coercivity, up to 0.58 T, while the absence of this strain is beneficial for magnetization. Among the observed techniques, hot extrusion and high pressure torsion have shown promising possibilities to further develop Mn-Al-C as permanent magnets. However, it should be taken into account the challenges related to design a proper processing window for hot extrusion and the limitation of HPT regarding the absence of texture.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7

Abstract

Bulk Mn52Al46C2 in τ-phase was prepared by vacuum induction melting and used as precursor for the production bulk permanent magnets by suction casting and hot-extrusion. Part of the precursor alloy was mechanically milled into a τ-phase powder and used as precursor for production of samples by electron beam melting, hot-compaction and high pressure torsion processes. The microstructure and magnetic properties of all samples were investigated and correlated. It was found that the mechanical deformation enhances coercivity, up to 0.58 T, while the absence of this strain is beneficial for magnetization. Among the observed techniques, hot extrusion and high pressure torsion have shown promising possibilities to further develop Mn-Al-C as permanent magnets. However, it should be taken into account the challenges related to design a proper processing window for hot extrusion and the limitation of HPT regarding the absence of texture.
不同工艺制备的Mn-Al-C永磁体的显微结构和磁性能
采用真空感应熔炼法制备了τ相块状Mn52Al46C2,并将其作为吸铸和热挤压法制备块状永磁体的前驱体。部分前驱体合金被机械磨成τ相粉末,作为前驱体,通过电子束熔化、热压实和高压扭转工艺制备样品。对所有样品的显微结构和磁性能进行了研究并进行了对比。结果表明,机械变形使合金的矫顽力增强,矫顽力可达0.58 T,而没有机械变形则有利于磁化。在观察到的技术中,热挤压和高压扭转显示出进一步发展Mn-Al-C永磁体的良好可能性。然而,应该考虑到设计合适的热挤压加工窗口的挑战,以及HPT在缺乏纹理方面的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信