Business model and methods of evaluation in sustainable manufacturing

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Haishang Wu
{"title":"Business model and methods of evaluation in sustainable manufacturing","authors":"Haishang Wu","doi":"10.1051/mfreview/2021026","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) enables cost-effective and efficient production toward sustainability. However, a rigorous evaluation method is required to further investigate the measurement method and efficiency before AM can be well-positioned in sustainable manufacturing and become the industry mainstream. Cost savings play a key role in the manufacturing industry. Compared to conventional manufacturing (CM), the cost of AM is volume-independent. In contrast, CM production requires a certain volume to share the initial tooling costs to achieve cost reduction. This constraint limits CM from service on demand and leaves ambiguity in the threshold setting of that critical batch volume. In addition, the invisibility of AM advantages in cost factors blocks AM technologies from appropriate processes and affects its applications. To address these issues, this paper proposes a business model. The major issues encountered by AM are the scaling, speed, and size of products. The enhancement of cost modeling and addressing speed, scale, and size issues are the novelties of this study and provide a breakthrough in AM issues. Generic equations are derived using the convergence effect and cost–volume intersection calculation between AM and CM. Furthermore, the divide-and-conquer approach is proposed to support scaling factors and dependencies for both AM and CM. Consequently, appropriate AM technologies can be compared with the CM convergence threshold to contribute to decision-making. Next, the advantages and weaknesses of AM are identified, and a collaboration pattern is proposed to connect large enterprises, small-and medium-sized enterprises, and home-based manufacturers into an AM society. Through this society, the advantages of AM can be fully exploited, scaling and speed issues can be addressed, and AM's dominant role in sustainable manufacturing can be made feasible.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

Abstract

Additive manufacturing (AM) enables cost-effective and efficient production toward sustainability. However, a rigorous evaluation method is required to further investigate the measurement method and efficiency before AM can be well-positioned in sustainable manufacturing and become the industry mainstream. Cost savings play a key role in the manufacturing industry. Compared to conventional manufacturing (CM), the cost of AM is volume-independent. In contrast, CM production requires a certain volume to share the initial tooling costs to achieve cost reduction. This constraint limits CM from service on demand and leaves ambiguity in the threshold setting of that critical batch volume. In addition, the invisibility of AM advantages in cost factors blocks AM technologies from appropriate processes and affects its applications. To address these issues, this paper proposes a business model. The major issues encountered by AM are the scaling, speed, and size of products. The enhancement of cost modeling and addressing speed, scale, and size issues are the novelties of this study and provide a breakthrough in AM issues. Generic equations are derived using the convergence effect and cost–volume intersection calculation between AM and CM. Furthermore, the divide-and-conquer approach is proposed to support scaling factors and dependencies for both AM and CM. Consequently, appropriate AM technologies can be compared with the CM convergence threshold to contribute to decision-making. Next, the advantages and weaknesses of AM are identified, and a collaboration pattern is proposed to connect large enterprises, small-and medium-sized enterprises, and home-based manufacturers into an AM society. Through this society, the advantages of AM can be fully exploited, scaling and speed issues can be addressed, and AM's dominant role in sustainable manufacturing can be made feasible.
可持续制造的商业模式与评价方法
增材制造(AM)能够实现经济高效的可持续性生产。然而,增材制造要想在可持续制造中站稳脚跟,成为行业主流,还需要一个严谨的评估方法来进一步研究测量方法和效率。成本节约在制造业中起着关键作用。与传统制造(CM)相比,增材制造的成本与体积无关。相比之下,CM生产需要一定的批量来分担初始的工装成本,以达到降低成本的目的。此约束限制CM按需提供服务,并在关键批处理量的阈值设置中留下歧义。此外,增材制造优势在成本因素上的不可见性阻碍了增材制造技术的适当工艺,影响了其应用。为了解决这些问题,本文提出了一种商业模式。增材制造遇到的主要问题是产品的规模、速度和尺寸。增强成本建模和解决速度、规模和尺寸问题是本研究的新颖之处,并为增材制造问题提供了突破。利用AM和CM之间的收敛效应和成本-体积交集计算,推导出了通用方程。此外,提出了分而治之的方法来支持AM和CM的缩放因子和依赖关系。因此,适当的增材制造技术可以与CM收敛阈值进行比较,从而有助于决策。其次,识别了增材制造的优势和劣势,并提出了一种将大型企业、中小企业和家庭制造商连接到增材制造社会的协作模式。通过这个社会,增材制造的优势可以得到充分利用,规模和速度问题可以得到解决,增材制造在可持续制造中的主导作用可以实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信