Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method

IF 1.9 Q3 ENGINEERING, MANUFACTURING
J. Obiko, F. Mwema, M. Bodunrin
{"title":"Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method","authors":"J. Obiko, F. Mwema, M. Bodunrin","doi":"10.1051/MFREVIEW/2021001","DOIUrl":null,"url":null,"abstract":"In this study, we show that optimising cutting forces as a machining response gave the most favourable conditions for turning of Ti-6Al-4V alloy. Using a combination of computational methods involving DEFORM simulations, Taguchi Design of Experiment (DOE) and analysis of variance (ANOVA), it was possible to minimise typical machining response such as the cutting force, cutting power and chip-tool interface temperature. The turning parameters that were varied in this study include cutting speed, depth of cut and feed rate. The optimum turning parameter combinations that would minimise the machining responses were established by using the “smaller the better” criterion and selecting the highest value of Signal to Noise Ratio. Confirmatory simulation revealed that using cutting speed of 120 m/min, 0.25 mm depth of cut and 0.1 mm/rev feed rate, the lowest cutting force of 88.21 N and chip-tool interface temperature of 387.24 °C can be obtained. Regression analysis indicated that the highest correlation coefficient of 0.97 was obtained between cutting forces and the turning parameters. The relationship between cutting forces and the turning parameters was linear since first-order regression model was sufficient.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 13

Abstract

In this study, we show that optimising cutting forces as a machining response gave the most favourable conditions for turning of Ti-6Al-4V alloy. Using a combination of computational methods involving DEFORM simulations, Taguchi Design of Experiment (DOE) and analysis of variance (ANOVA), it was possible to minimise typical machining response such as the cutting force, cutting power and chip-tool interface temperature. The turning parameters that were varied in this study include cutting speed, depth of cut and feed rate. The optimum turning parameter combinations that would minimise the machining responses were established by using the “smaller the better” criterion and selecting the highest value of Signal to Noise Ratio. Confirmatory simulation revealed that using cutting speed of 120 m/min, 0.25 mm depth of cut and 0.1 mm/rev feed rate, the lowest cutting force of 88.21 N and chip-tool interface temperature of 387.24 °C can be obtained. Regression analysis indicated that the highest correlation coefficient of 0.97 was obtained between cutting forces and the turning parameters. The relationship between cutting forces and the turning parameters was linear since first-order regression model was sufficient.
基于DEFORM 3D仿真和田口法的Ti-6Al-4V车削加工参数验证与优化
在这项研究中,我们表明,优化切削力作为加工响应,为Ti-6Al-4V合金的车削提供了最有利的条件。结合使用包括DEFORM模拟、田口实验设计(DOE)和方差分析(ANOVA)在内的计算方法,可以最小化典型的加工响应,如切削力、切削功率和切屑-刀具界面温度。在本研究中,车削参数的变化包括切削速度、切削深度和进给速度。采用“越小越好”准则,选择信噪比的最高值,建立了使加工响应最小化的最佳车削参数组合。验证性仿真结果表明,当切削速度为120 m/min、切削深度为0.25 mm、进给速度为0.1 mm/rev时,切削力最小为88.21 N,刀屑界面温度为387.24℃。回归分析表明,切削力与车削参数的相关系数最高,为0.97。由于一阶回归模型充分,切削力与车削参数之间呈线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信