A. Mathivanan, M. P. Sudeshkumar, R. Ramadoss, C. Ezilarasan, G. Raju, V. Jayaseelan
{"title":"Finite element simulation and regression modeling of machining attributes on turning AISI 304 stainless steel","authors":"A. Mathivanan, M. P. Sudeshkumar, R. Ramadoss, C. Ezilarasan, G. Raju, V. Jayaseelan","doi":"10.1051/mfreview/2021022","DOIUrl":null,"url":null,"abstract":"To-date, the usage of finite element analysis (FEA) in the area of machining operations has demonstrated to be efficient to investigate the machining processes. The simulated results have been used by tool makers and researchers to optimize the process parameters. As a 3D simulation normally would require more computational time, 2D simulations have been popular choices. In the present article, a Finite Element Model (FEM) using DEFORM 3D is presented, which was used to predict the cutting force, temperature at the insert edge, effective stress during turning of AISI 304 stainless steel. The simulated results were compared with the experimental results. The shear friction factor of 0.6 was found to be best, with strong agreement between the simulated and experimental values. As the cutting speed increased from 125 m/min to 200 m/min, a maximum value of 750 MPa stress as well as a temperature generation of 650 °C at the insert edge have been observed at rather higher feed rate and perhaps a mid level of depth of cut. Furthermore, the Response Surface Methodology (RSM) model is developed to predict the cutting force and temperature at the insert edge.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3
Abstract
To-date, the usage of finite element analysis (FEA) in the area of machining operations has demonstrated to be efficient to investigate the machining processes. The simulated results have been used by tool makers and researchers to optimize the process parameters. As a 3D simulation normally would require more computational time, 2D simulations have been popular choices. In the present article, a Finite Element Model (FEM) using DEFORM 3D is presented, which was used to predict the cutting force, temperature at the insert edge, effective stress during turning of AISI 304 stainless steel. The simulated results were compared with the experimental results. The shear friction factor of 0.6 was found to be best, with strong agreement between the simulated and experimental values. As the cutting speed increased from 125 m/min to 200 m/min, a maximum value of 750 MPa stress as well as a temperature generation of 650 °C at the insert edge have been observed at rather higher feed rate and perhaps a mid level of depth of cut. Furthermore, the Response Surface Methodology (RSM) model is developed to predict the cutting force and temperature at the insert edge.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.