{"title":"Investigation into color designs of product packaging through visual evaluations using machine learning methods","authors":"Yang Gao","doi":"10.1051/mfreview/2021019","DOIUrl":null,"url":null,"abstract":"For a commodity, in addition to its quality, its external package is also very essential. This paper briefly introduced the intelligent support vector machine (SVM) algorithm for color design of paper packaging. The features were extracted from photos of packages using scale-invariant feature transform (SIFT), and the intelligent algorithm was trained and tested using photos of paper packaging for ceramic products collected at the ceramic crafts market as a sample set. Two paper package schemes designed in this study were used for further test. The SVM algorithm was compared with the back-propagation (BP) algorithm and the convolutional neural network (CNN) algorithm. The results showed that the three intelligent algorithms could evaluate the color design of paper packages, but the SVM algorithm was more accurate than the BP and CNN algorithms in evaluating the imagery of color design, both for the samples collected in the craft market and for the paper packaging scheme designed in this paper.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
For a commodity, in addition to its quality, its external package is also very essential. This paper briefly introduced the intelligent support vector machine (SVM) algorithm for color design of paper packaging. The features were extracted from photos of packages using scale-invariant feature transform (SIFT), and the intelligent algorithm was trained and tested using photos of paper packaging for ceramic products collected at the ceramic crafts market as a sample set. Two paper package schemes designed in this study were used for further test. The SVM algorithm was compared with the back-propagation (BP) algorithm and the convolutional neural network (CNN) algorithm. The results showed that the three intelligent algorithms could evaluate the color design of paper packages, but the SVM algorithm was more accurate than the BP and CNN algorithms in evaluating the imagery of color design, both for the samples collected in the craft market and for the paper packaging scheme designed in this paper.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.