Comparison of conventional drilling and helical milling for hole making in Ti6Al4V titanium alloy under sustainable dry condition

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Sneha Akula, Sadvidya N. Nayak, G. Bolar, V. Managuli
{"title":"Comparison of conventional drilling and helical milling for hole making in Ti6Al4V titanium alloy under sustainable dry condition","authors":"Sneha Akula, Sadvidya N. Nayak, G. Bolar, V. Managuli","doi":"10.1051/MFREVIEW/2021010","DOIUrl":null,"url":null,"abstract":"Hole drilling in Ti6Al4V titanium alloy is challenging due to its poor machinability resulting from high-temperature strength and low thermal conductivity. Therefore, an evaluation of the helical milling process is carried out by comparing the thrust force, surface roughness, machining temperature, burr size, and hole diametrical accuracy with the conventional drilling process. The results indicate the advantage of the helical milling in terms of the lower magnitude of thrust force. The holes generated using helical milling displayed a superior surface finish at lower axial feed conditions, while higher axial feed conditions result in chatter due to the tool deformation. Also, the absence of a heat-affected zone (HAZ) under dry helical milling conditions indicates the work surface formation without thermal damage. Besides, a significant reduction in the size of the burrs is noted during helical milling due to lower machining temperature. Analysis of the hole diameter reinforces the capability of the helical milling process for processing H7 quality holes. Consequently, helical milling can be considered a sustainable alternative to mechanical drilling, considering its ability to machine quality holes under dry machining conditions.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 12

Abstract

Hole drilling in Ti6Al4V titanium alloy is challenging due to its poor machinability resulting from high-temperature strength and low thermal conductivity. Therefore, an evaluation of the helical milling process is carried out by comparing the thrust force, surface roughness, machining temperature, burr size, and hole diametrical accuracy with the conventional drilling process. The results indicate the advantage of the helical milling in terms of the lower magnitude of thrust force. The holes generated using helical milling displayed a superior surface finish at lower axial feed conditions, while higher axial feed conditions result in chatter due to the tool deformation. Also, the absence of a heat-affected zone (HAZ) under dry helical milling conditions indicates the work surface formation without thermal damage. Besides, a significant reduction in the size of the burrs is noted during helical milling due to lower machining temperature. Analysis of the hole diameter reinforces the capability of the helical milling process for processing H7 quality holes. Consequently, helical milling can be considered a sustainable alternative to mechanical drilling, considering its ability to machine quality holes under dry machining conditions.
Ti6Al4V钛合金持续干燥条件下常规钻削与螺旋铣削制孔的比较
Ti6Al4V钛合金高温强度大、导热系数低,可加工性差,是一种具有挑战性的材料。因此,通过将推力、表面粗糙度、加工温度、毛刺尺寸和孔直径精度与常规钻孔工艺进行比较,对螺旋铣削工艺进行了评估。结果表明,螺旋铣削具有推力较小的优点。使用螺旋铣削产生的孔在较低的轴向进给条件下显示出良好的表面光洁度,而较高的轴向进给条件会导致刀具变形而产生颤振。此外,在干式螺旋铣削条件下,没有热影响区(HAZ)表明工作表面形成没有热损伤。此外,在螺旋铣削过程中,由于加工温度较低,毛刺的尺寸显著减小。孔直径分析增强了螺旋铣削工艺加工H7级孔的能力。因此,考虑到在干式加工条件下加工高质量孔的能力,螺旋铣削可以被认为是机械钻孔的可持续替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信