Optimization of fatigue strength of selective inhibition sintered polyamide 12 parts using RSM

IF 1.9 Q3 ENGINEERING, MANUFACTURING
M. Sisay, E. Balasubramanian
{"title":"Optimization of fatigue strength of selective inhibition sintered polyamide 12 parts using RSM","authors":"M. Sisay, E. Balasubramanian","doi":"10.1051/mfreview/2020020","DOIUrl":null,"url":null,"abstract":"Selective inhibition sintering (SIS) is a powder based that fabricate functional parts through fusion of powder bed on a layer by layer basis. Being a new fabrication method, the correlation between process variables and part properties are not fully comprehended. Polyamide 12 (nylon 12) is one of the widely used materials in powder based AM processes including SIS. Therefore, in this work, the effect of critical SIS process parameters on the fatigue behavior of polyamide 12 parts was experimentally investigated, and the parameter settings were optimized to maximize fatigue strength. The number of experimental runs was determined based on Box-Behnken design, and specimens were fabricated as per ASTM D7791. Specimens were tested by subjected them to fluctuating loading at a frequency of 3 Hz. The test results were analyzed using Minitab statistical analysis software. From the ANOVA result, it was identified that the fatigue life of SIS parts is significantly influenced by layer thickness, heater temperature, and heater feed rate. Optimization of process variables settings was performed using the Minitab response optimizer and maximum fatigue strength of 17.43 MPa was obtained. The verification experiment resulted in 17.93 MPa fatigue strength which is comparable to the predicted value and with the result from the literatures.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"18 7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020020","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

Selective inhibition sintering (SIS) is a powder based that fabricate functional parts through fusion of powder bed on a layer by layer basis. Being a new fabrication method, the correlation between process variables and part properties are not fully comprehended. Polyamide 12 (nylon 12) is one of the widely used materials in powder based AM processes including SIS. Therefore, in this work, the effect of critical SIS process parameters on the fatigue behavior of polyamide 12 parts was experimentally investigated, and the parameter settings were optimized to maximize fatigue strength. The number of experimental runs was determined based on Box-Behnken design, and specimens were fabricated as per ASTM D7791. Specimens were tested by subjected them to fluctuating loading at a frequency of 3 Hz. The test results were analyzed using Minitab statistical analysis software. From the ANOVA result, it was identified that the fatigue life of SIS parts is significantly influenced by layer thickness, heater temperature, and heater feed rate. Optimization of process variables settings was performed using the Minitab response optimizer and maximum fatigue strength of 17.43 MPa was obtained. The verification experiment resulted in 17.93 MPa fatigue strength which is comparable to the predicted value and with the result from the literatures.
选择性抑制烧结聚酰胺12零件疲劳强度的RSM优化
选择性抑制烧结(SIS)是一种以粉末为基础,通过粉末床逐层熔合制造功能部件的方法。作为一种新的制造方法,工艺变量与零件性能之间的关系还没有得到充分的认识。聚酰胺12(尼龙12)是包括SIS在内的粉末基AM工艺中广泛使用的材料之一。因此,本研究通过实验研究了SIS关键工艺参数对聚酰胺12零件疲劳行为的影响,并优化了参数设置,以最大限度地提高疲劳强度。实验运行次数根据Box-Behnken设计确定,样品按照ASTM D7791制作。试样经受频率为3hz的波动载荷试验。试验结果采用Minitab统计分析软件进行分析。方差分析结果表明,层厚、加热器温度和加热器进给量对SIS零件的疲劳寿命有显著影响。利用Minitab响应优化器对工艺变量设置进行了优化,获得了17.43 MPa的最大疲劳强度。验证试验的疲劳强度为17.93 MPa,与预测值和文献结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信