Comments about birefringence dispersion, with group and phase birefringence measurements in polarization-maintaining fibers

IF 1.9 4区 物理与天体物理 Q3 OPTICS
T. Villedieu, L. Lablonde, H. Boiron, Adrien Steib, G. Mélin, T. Robin, B. Cadier, M. Rattier, H. Lefèvre
{"title":"Comments about birefringence dispersion, with group and phase birefringence measurements in polarization-maintaining fibers","authors":"T. Villedieu, L. Lablonde, H. Boiron, Adrien Steib, G. Mélin, T. Robin, B. Cadier, M. Rattier, H. Lefèvre","doi":"10.1051/jeos/2022014","DOIUrl":null,"url":null,"abstract":"A recent JEOS-RP publication proposed Comments about Dispersion of Light Waves, and we present here complementary comments for birefringence dispersion in polarization-maintaining (PM) fibers, and for its measurement techniques based on channeled spectrum analysis. We start by a study of early seminal papers, and we propose additional explanations to get a simpler understanding of the subject. A geometrical construction is described to relate phase birefringence to group birefringence, and it is applied to the measurement of several kinds of PM fibers using stress-induced photo-elasticity, or shape birefringence. These measurements confirm clearly that the difference between group birefringence and phase birefringence is limited to 15–20% in stress-induced PM fibers (bow-tie, panda, or tiger-eye), but that it can get up to a 3-fold factor with an elliptical-core (E-core) fiber. There are also surprising results with solid-core micro-structured PM fibers, that are based on shape birefringence, as E-core fibers.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2022014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

A recent JEOS-RP publication proposed Comments about Dispersion of Light Waves, and we present here complementary comments for birefringence dispersion in polarization-maintaining (PM) fibers, and for its measurement techniques based on channeled spectrum analysis. We start by a study of early seminal papers, and we propose additional explanations to get a simpler understanding of the subject. A geometrical construction is described to relate phase birefringence to group birefringence, and it is applied to the measurement of several kinds of PM fibers using stress-induced photo-elasticity, or shape birefringence. These measurements confirm clearly that the difference between group birefringence and phase birefringence is limited to 15–20% in stress-induced PM fibers (bow-tie, panda, or tiger-eye), but that it can get up to a 3-fold factor with an elliptical-core (E-core) fiber. There are also surprising results with solid-core micro-structured PM fibers, that are based on shape birefringence, as E-core fibers.
关于双折射色散的评论,在保偏光纤中使用群双折射和相位双折射测量
最近的JEOS-RP出版物提出了关于光波色散的评论,我们在这里提出了关于偏振保持(PM)光纤中的双折射色散及其基于通道频谱分析的测量技术的补充评论。我们从研究早期的开创性论文开始,我们提出了额外的解释,以更简单地理解这个主题。描述了相双折射与群双折射的几何结构,并将其应用于几种PM纤维的应力诱导光弹性或形状双折射测量。这些测量清楚地证实,在应力诱导的PM纤维(蝴蝶结、熊猫或虎眼)中,群双折射和相位双折射之间的差异仅限于15-20%,但在椭圆芯(e芯)光纤中,这一差异可以达到3倍。固体芯微结构PM纤维也有令人惊讶的结果,它基于形状双折射,如e芯纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信