Research on steering control performance of electric forklift with steer by wire

Q3 Engineering
Chuang Feng
{"title":"Research on steering control performance of electric forklift with steer by wire","authors":"Chuang Feng","doi":"10.1051/IJMQE/2020018","DOIUrl":null,"url":null,"abstract":"Forklift plays an important role in cargo handling in the warehouse; therefore, it is necessary to ensure the stability of the forklift when turning to guarantee the safety of transportation. In this study, the particle swarm optimization (PSO) algorithm was improved by a genetic algorithm (GA), and the parameters of the proportion, integration, and differentiation (PID) controller were calculated using the improved algorithm for forklift steering control. Then simulation experiments were carried out using MATLAB. The results showed that the convergence speed of the improved PSO algorithm was faster than that of GA, and its adaptive value after convergence stability was significantly lower than that of the PSO algorithm; whether it was low-speed or high-speed steering, the three algorithms responded to the steering signal quickly; the yaw velocity and sideslip angle of the forklift steering under the improved PSO algorithm were more suitable for stable steering, and the increase of the steering speed would increase the yaw velocity. The novelty of this paper is that the traditional PSO algorithm is improved by GA and the particle swarm jumps out of the locally optimal solution through the crossover and mutation operations.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/IJMQE/2020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Forklift plays an important role in cargo handling in the warehouse; therefore, it is necessary to ensure the stability of the forklift when turning to guarantee the safety of transportation. In this study, the particle swarm optimization (PSO) algorithm was improved by a genetic algorithm (GA), and the parameters of the proportion, integration, and differentiation (PID) controller were calculated using the improved algorithm for forklift steering control. Then simulation experiments were carried out using MATLAB. The results showed that the convergence speed of the improved PSO algorithm was faster than that of GA, and its adaptive value after convergence stability was significantly lower than that of the PSO algorithm; whether it was low-speed or high-speed steering, the three algorithms responded to the steering signal quickly; the yaw velocity and sideslip angle of the forklift steering under the improved PSO algorithm were more suitable for stable steering, and the increase of the steering speed would increase the yaw velocity. The novelty of this paper is that the traditional PSO algorithm is improved by GA and the particle swarm jumps out of the locally optimal solution through the crossover and mutation operations.
线控转向电动叉车转向控制性能研究
叉车在仓库货物搬运中起着重要的作用;因此,有必要保证叉车转弯时的稳定性,以保证运输的安全。针对叉车转向控制问题,采用遗传算法对粒子群优化(PSO)算法进行改进,并利用改进算法计算比例、积分和微分(PID)控制器参数。然后利用MATLAB进行仿真实验。结果表明:改进粒子群算法的收敛速度比遗传算法快,收敛稳定后的自适应值明显低于粒子群算法;无论是低速转向还是高速转向,三种算法都能快速响应转向信号;改进粒子群算法下的叉车转向横摆速度和侧滑角更适合于稳定转向,并且转向速度的增加会增加转向横摆速度。本文的新颖之处在于采用遗传算法对传统粒子群优化算法进行改进,粒子群通过交叉和变异操作跳出局部最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信