Optimizing the transportation route of fresh food in cold chain logistics by improved genetic algorithms

Q3 Engineering
Jing Peng
{"title":"Optimizing the transportation route of fresh food in cold chain logistics by improved genetic algorithms","authors":"Jing Peng","doi":"10.1051/ijmqe/2019013","DOIUrl":null,"url":null,"abstract":"At present, fresh food logistics transportation in China is still in the primary stage of development, transportation costs are rising, and cold chain logistics path design is unreasonable. Therefore, the optimization and prediction of the cold chain transportation route of fresh food has become the focus of the research in this field. Based on the principle of genetic algorithm, this paper designs an improved genetic algorithm to solve the problem of urban cold chain transportation path. In order to optimize the distribution path and minimize the total cost, a cold chain transport model is established. Through the simulation coding and calculation of the model, the influence of genetic algorithm on the optimization of the cold chain transport path is explored to reduce the cost and price of cold chain logistics transport, improve the transport efficiency, and thus improve the economic benefits of enterprises in this field. Through experiments, the optimal solution of the example is obtained, and compared with the traditional algorithm, it is proved that all the paths obtained by the improved genetic algorithm conform to the model with capacity constraint and time window constraint, and there is an optimal path for the most energy saving. In conclusion, the transport path of cold chain logistics calculated by the improved genetic algorithm is more optimized than the traditional algorithm and greatly improves the transport efficiency.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/ijmqe/2019013","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ijmqe/2019013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

At present, fresh food logistics transportation in China is still in the primary stage of development, transportation costs are rising, and cold chain logistics path design is unreasonable. Therefore, the optimization and prediction of the cold chain transportation route of fresh food has become the focus of the research in this field. Based on the principle of genetic algorithm, this paper designs an improved genetic algorithm to solve the problem of urban cold chain transportation path. In order to optimize the distribution path and minimize the total cost, a cold chain transport model is established. Through the simulation coding and calculation of the model, the influence of genetic algorithm on the optimization of the cold chain transport path is explored to reduce the cost and price of cold chain logistics transport, improve the transport efficiency, and thus improve the economic benefits of enterprises in this field. Through experiments, the optimal solution of the example is obtained, and compared with the traditional algorithm, it is proved that all the paths obtained by the improved genetic algorithm conform to the model with capacity constraint and time window constraint, and there is an optimal path for the most energy saving. In conclusion, the transport path of cold chain logistics calculated by the improved genetic algorithm is more optimized than the traditional algorithm and greatly improves the transport efficiency.
基于改进遗传算法的生鲜冷链物流运输路径优化
目前,中国生鲜食品物流运输仍处于初级发展阶段,运输成本不断上升,冷链物流路径设计不合理。因此,生鲜食品冷链运输路线的优化与预测成为该领域研究的重点。本文基于遗传算法的原理,设计了一种改进的遗传算法来解决城市冷链运输路径问题。为了优化配送路径,使总成本最小化,建立了冷链运输模型。通过对模型的仿真编码和计算,探索遗传算法对冷链运输路径优化的影响,降低冷链物流运输的成本和价格,提高运输效率,从而提高该领域企业的经济效益。通过实验得到了算例的最优解,并与传统算法进行了比较,证明改进遗传算法得到的所有路径都符合容量约束和时间窗约束的模型,存在最节能的最优路径。综上所述,改进遗传算法计算的冷链物流运输路径比传统算法更加优化,大大提高了运输效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信