Action recognition and control of mechanical simulated arm: electromyographic signal detection

Q3 Engineering
Genlai Lv
{"title":"Action recognition and control of mechanical simulated arm: electromyographic signal detection","authors":"Genlai Lv","doi":"10.1051/ijmqe/2020008","DOIUrl":null,"url":null,"abstract":"Electromyography (EMG) signal contains a large amount of human motion information, which can be used to classify human actions. In this study, based on the detection of surface electromyography (sEMG) signal, three actions were designed, the sEMG signal was collected by the EMG acquisition system. Four feature values, including root-mean-square value, average absolute value (MAV), wavelength, and Zero crossing point, were extracted from the signal. Then these values were taken as the input of Back-Propagation neural network (BPNN) to recognize different actions, thereby realizing the real-time control of mechanical simulated arm. The experiment found that the training time of the BPNN method designed in this study was short, 11.36 s, and the average recognition accuracy rate reached 92.2%. In the real-time control experiment of mechanical simulated arm, the recognition accuracy of different actions reached more than 90%, and the running time was short. The experimental results verifies the effectiveness of the proposed method and make some contributions to the efficient control of the mechanical simulation arm.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ijmqe/2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electromyography (EMG) signal contains a large amount of human motion information, which can be used to classify human actions. In this study, based on the detection of surface electromyography (sEMG) signal, three actions were designed, the sEMG signal was collected by the EMG acquisition system. Four feature values, including root-mean-square value, average absolute value (MAV), wavelength, and Zero crossing point, were extracted from the signal. Then these values were taken as the input of Back-Propagation neural network (BPNN) to recognize different actions, thereby realizing the real-time control of mechanical simulated arm. The experiment found that the training time of the BPNN method designed in this study was short, 11.36 s, and the average recognition accuracy rate reached 92.2%. In the real-time control experiment of mechanical simulated arm, the recognition accuracy of different actions reached more than 90%, and the running time was short. The experimental results verifies the effectiveness of the proposed method and make some contributions to the efficient control of the mechanical simulation arm.
机械模拟臂的动作识别与控制:肌电信号检测
肌电图(Electromyography, EMG)信号包含了大量的人体运动信息,可以用来对人体的动作进行分类。本研究在检测表面肌电信号的基础上,设计了三种动作,肌电信号采集系统对表面肌电信号进行采集。从信号中提取4个特征值,包括均方根值、平均绝对值(MAV)、波长和零点交叉点。然后将这些值作为反向传播神经网络(BPNN)的输入来识别不同的动作,从而实现机械仿真臂的实时控制。实验发现,本研究设计的BPNN方法训练时间较短,为11.36 s,平均识别准确率达到92.2%。在机械仿真臂的实时控制实验中,对不同动作的识别准确率达到90%以上,且运行时间短。实验结果验证了该方法的有效性,为机械仿真臂的高效控制做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信