Performance of PV array configurations under dynamic partial shadings

IF 1.9 Q3 PHYSICS, APPLIED
Chuanyong Shao, A. Migan-Dubois, D. Diallo
{"title":"Performance of PV array configurations under dynamic partial shadings","authors":"Chuanyong Shao, A. Migan-Dubois, D. Diallo","doi":"10.1051/epjpv/2023012","DOIUrl":null,"url":null,"abstract":"The partial shading effect (PSE) is responsible for most power losses in a photovoltaic (PV) system. By modifying the interconnections between PV modules, called PV array reconfiguration, it is possible to improve the power output under partial shading conditions (PSCs). Compared to research on static PSCs, the impact of dynamic PSCs on PV arrays is rarely mentioned, although it deserves to be studied. This paper studies the dynamic PSE on four traditional PV configurations and two reconfiguration techniques based on a 5 × 5 PV array. The four traditional PV configurations are Series-Parallel (SP), Bridge-Link, Honey-Comb, and Total-Cross-Tied (TCT). The two reconfiguration techniques are SuDoKu (SDK) representing Physical Array Reconfiguration (PAR) and Electrical Array Reconfiguration (EAR). The dynamic PSCs are simplified to three types based on the varying orientation: horizontal, vertical, and diagonal. Simulations are carried out with Matlab & Simulink. The performance comparison for the four traditional PV array and two reconfiguration techniques is based on daily energy losses. The results show that four traditional PV configurations techniques, in all PSCs' scenarios, EAR has the most stable performance and the lowest energy losses. The energy losses of SP connection are the largest in all PSCs cases. Although their performance varies depending on the partial shading case, Total-Cross-Tied and SudoDKu lead to the lowest energy losses.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2023012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The partial shading effect (PSE) is responsible for most power losses in a photovoltaic (PV) system. By modifying the interconnections between PV modules, called PV array reconfiguration, it is possible to improve the power output under partial shading conditions (PSCs). Compared to research on static PSCs, the impact of dynamic PSCs on PV arrays is rarely mentioned, although it deserves to be studied. This paper studies the dynamic PSE on four traditional PV configurations and two reconfiguration techniques based on a 5 × 5 PV array. The four traditional PV configurations are Series-Parallel (SP), Bridge-Link, Honey-Comb, and Total-Cross-Tied (TCT). The two reconfiguration techniques are SuDoKu (SDK) representing Physical Array Reconfiguration (PAR) and Electrical Array Reconfiguration (EAR). The dynamic PSCs are simplified to three types based on the varying orientation: horizontal, vertical, and diagonal. Simulations are carried out with Matlab & Simulink. The performance comparison for the four traditional PV array and two reconfiguration techniques is based on daily energy losses. The results show that four traditional PV configurations techniques, in all PSCs' scenarios, EAR has the most stable performance and the lowest energy losses. The energy losses of SP connection are the largest in all PSCs cases. Although their performance varies depending on the partial shading case, Total-Cross-Tied and SudoDKu lead to the lowest energy losses.
动态部分遮阳下光伏阵列配置性能研究
在光伏(PV)系统中,部分遮阳效应(PSE)是造成大部分功率损失的原因。通过修改光伏模块之间的互连,称为光伏阵列重构,可以改善部分遮阳条件下的功率输出。与静态PSCs的研究相比,动态PSCs对光伏阵列的影响很少被提及,但值得研究。本文研究了基于5 × 5光伏阵列的四种传统光伏配置和两种重构技术的动态PSE。传统的四种光伏配置是:SP(串并联)、桥接、蜂窝和TCT(全交叉连接)。这两种重新配置技术是代表物理阵列重新配置(PAR)和电子阵列重新配置(EAR)的数独(SDK)。根据不同的方向,将动态psc简化为三种类型:水平、垂直和对角。利用Matlab和Simulink进行了仿真。四种传统光伏阵列和两种重构技术的性能比较是基于日能量损失的。结果表明,在四种传统光伏配置技术中,EAR在所有PSCs场景下的性能最稳定,能量损失最低。SP连接的能量损失是所有PSCs中最大的。虽然它们的性能因部分遮阳情况而异,但Total-Cross-Tied和数独导致的能量损失最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信