M. Allibert, E. Merle, S. Delpech, D. Gérardin, D. Heuer, A. Laureau, S. Moreau
{"title":"Preliminary proliferation study of the molten salt fast reactor","authors":"M. Allibert, E. Merle, S. Delpech, D. Gérardin, D. Heuer, A. Laureau, S. Moreau","doi":"10.1051/epjn/2019062","DOIUrl":null,"url":null,"abstract":"The molten salt reactor designs, where fissile and fertile materials are dissolved in molten salts, under consideration in the framework of the Generation IV International Forum, present some unusual characteristics in terms of design, operation, safety and also proliferation resistance issues. This paper has the main objective of presenting some proliferation challenges for the reference version of the Molten Salt Fast Reactor (MSFR), a large power reactor based on the thorium fuel cycle. Preliminary studies of proliferation resistance are presented here, dedicated to the threat of nuclear material diversion in the MSFR, considering both the reactor system itself and the processing units located onsite.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":"6 1","pages":"5"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjn/2019062","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2019062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The molten salt reactor designs, where fissile and fertile materials are dissolved in molten salts, under consideration in the framework of the Generation IV International Forum, present some unusual characteristics in terms of design, operation, safety and also proliferation resistance issues. This paper has the main objective of presenting some proliferation challenges for the reference version of the Molten Salt Fast Reactor (MSFR), a large power reactor based on the thorium fuel cycle. Preliminary studies of proliferation resistance are presented here, dedicated to the threat of nuclear material diversion in the MSFR, considering both the reactor system itself and the processing units located onsite.