C. Ekberg, T. Retegan, E. Týnová, M. Sarsfield, J. Wallenius
{"title":"Fuel fabrication and reprocessing issues: the ASGARD project","authors":"C. Ekberg, T. Retegan, E. Týnová, M. Sarsfield, J. Wallenius","doi":"10.1051/epjn/2019014","DOIUrl":null,"url":null,"abstract":"The ASGARD project (2012–2016) was designed to tackle the challenge the multi-dimensional questions dealing with the recyclability of novel nuclear fuels. These dimensions are: the scientific achievements, investigating how to increase the industrial applicability of the fabrication of these novel fuels, the bridging of the often separate physics and chemical communities in connection with nuclear fuel cycles and finally to create an ambitious education and training platform. This will be offered to younger scientists and will include a broadening of their experience by international exchange with relevant facilities. At the end of the project 27 papers in peer reviewed journals were published and it is expected that the real number will be the double. The training and integration success was evidenced by the fruitful implementation of the Travel Fund as well as the unique schools, e.g. practical and theoretical handling of plutonium.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjn/2019014","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2019014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The ASGARD project (2012–2016) was designed to tackle the challenge the multi-dimensional questions dealing with the recyclability of novel nuclear fuels. These dimensions are: the scientific achievements, investigating how to increase the industrial applicability of the fabrication of these novel fuels, the bridging of the often separate physics and chemical communities in connection with nuclear fuel cycles and finally to create an ambitious education and training platform. This will be offered to younger scientists and will include a broadening of their experience by international exchange with relevant facilities. At the end of the project 27 papers in peer reviewed journals were published and it is expected that the real number will be the double. The training and integration success was evidenced by the fruitful implementation of the Travel Fund as well as the unique schools, e.g. practical and theoretical handling of plutonium.