{"title":"Balanced gain for a square metaloop antenna","authors":"H. Nakano, Ittoku Yoshino, T. Abe, J. Yamauchi","doi":"10.1051/EPJAM/2018010","DOIUrl":null,"url":null,"abstract":"A square loop antenna implemented using a metamaterial line, referred to as a metaloop, is discussed. The metaloop radiates a counter circularly polarized (CP) broadside beam when the loop circumference equals one guided wavelength. The frequency response of the gain shows two different maximum values: gain G Lmax for a left-handed CP wave at frequency fGLmax and gain GRmax for a right-handed CP wave at frequency fGRmax, where GLmax is smaller than GRmax. In order to increase GLmax, while not affecting the original GRmax as much as possible (i.e. balance the gain), a parasitic natural conducting loop (paraloop), whose circumference is one free-space wavelength at fGLmax, is placed at height Hpara above the metaloop. It is found that the difference in the gains can be reduced by choosing an appropriate Hpara. The radiation pattern at fGLmax is narrowed by the paraloop, while the VSWR is not remarkably affected.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/EPJAM/2018010","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2018010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
A square loop antenna implemented using a metamaterial line, referred to as a metaloop, is discussed. The metaloop radiates a counter circularly polarized (CP) broadside beam when the loop circumference equals one guided wavelength. The frequency response of the gain shows two different maximum values: gain G Lmax for a left-handed CP wave at frequency fGLmax and gain GRmax for a right-handed CP wave at frequency fGRmax, where GLmax is smaller than GRmax. In order to increase GLmax, while not affecting the original GRmax as much as possible (i.e. balance the gain), a parasitic natural conducting loop (paraloop), whose circumference is one free-space wavelength at fGLmax, is placed at height Hpara above the metaloop. It is found that the difference in the gains can be reduced by choosing an appropriate Hpara. The radiation pattern at fGLmax is narrowed by the paraloop, while the VSWR is not remarkably affected.