Trichoderma harzianum cerato-platanin enhances hydrolysis of lignocellulosic materials

IF 4.8 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Anna Pennacchio, Rossana Pitocchi, Giovanna Cristina Varese, Paola Giardina, Alessandra Piscitelli
{"title":"Trichoderma harzianum cerato-platanin enhances hydrolysis of lignocellulosic materials","authors":"Anna Pennacchio,&nbsp;Rossana Pitocchi,&nbsp;Giovanna Cristina Varese,&nbsp;Paola Giardina,&nbsp;Alessandra Piscitelli","doi":"10.1111/1751-7915.13836","DOIUrl":null,"url":null,"abstract":"<p>Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin <i>Th</i>CP from a marine strain of <i>Trichoderma harzianum</i>, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 4","pages":"1699-1706"},"PeriodicalIF":4.8000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13836","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13836","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin ThCP from a marine strain of Trichoderma harzianum, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.

Abstract Image

哈茨木霉角化铂增强木质纤维素材料的水解
考虑到其在世界范围内的丰富程度,纤维素可以成为替代化石石油基材料的合适人选,即使由于一些科学和技术差距,其潜力仍未得到开发。这项工作提供了新的可能性,首次证明了角朊-铂蛋白(一种小型真菌蛋白)对木质纤维素农业食品废弃物进行估价的能力。事实上,角朊蛋白可以使纤维素松弛,使其更容易被水解。从哈兹木霉海洋菌株中提取的角藻-platanin ThCP是一种高效的生物表面活性剂蛋白,已被证明能够有效地预处理苹果渣,获得65%的糖转化率。此外,当与漆酶酶结合使用时,糖转化率显着提高。对咖啡银皮和马铃薯皮等其他废弃物进行预处理也得到了类似的结果。对于广泛使用的漆酶预处理,这种新的预处理方法最大限度地减少了处理时间,提高了能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
9.80
自引率
3.50%
发文量
162
审稿时长
6-12 weeks
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信