{"title":"Adult stem cell plasticity and methods of detection.","authors":"G. Almeida-Porada, C. Porada, E. Zanjani","doi":"10.1046/J.1468-0734.2001.00027.X","DOIUrl":null,"url":null,"abstract":"The ability to selectively produce one or more differentiated cell types at will from totipotent stem cells would be of profound clinical importance, as it would enable the specific replacement of damaged/dysfunctional cell types within the body, potentially curing numerous diseases. Until recently, it was thought that the only cells that possessed sufficient immaturity to be capable of giving rise to more than one tissue type in vitro and in vivo were the embryonic stem cells. However, recent studies have now provided compelling evidence that the adult bone marrow, brain and skeletal muscle contain stem cells that possess the remarkable ability to trans-differentiate and give rise to progeny of alternate embryologic derivations. These recent findings have shattered the existing dogma that the stages of embryologic development are irreversible. In this review, we present a brief summary of the most significant findings in the field of stem cell plasticity, emphasizing studies involving the hematopoietic system, discussing the models used thus far, and finishing with our findings on human stem cell plasticity using the fetal sheep model.","PeriodicalId":82483,"journal":{"name":"Reviews in clinical and experimental hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/J.1468-0734.2001.00027.X","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in clinical and experimental hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/J.1468-0734.2001.00027.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
The ability to selectively produce one or more differentiated cell types at will from totipotent stem cells would be of profound clinical importance, as it would enable the specific replacement of damaged/dysfunctional cell types within the body, potentially curing numerous diseases. Until recently, it was thought that the only cells that possessed sufficient immaturity to be capable of giving rise to more than one tissue type in vitro and in vivo were the embryonic stem cells. However, recent studies have now provided compelling evidence that the adult bone marrow, brain and skeletal muscle contain stem cells that possess the remarkable ability to trans-differentiate and give rise to progeny of alternate embryologic derivations. These recent findings have shattered the existing dogma that the stages of embryologic development are irreversible. In this review, we present a brief summary of the most significant findings in the field of stem cell plasticity, emphasizing studies involving the hematopoietic system, discussing the models used thus far, and finishing with our findings on human stem cell plasticity using the fetal sheep model.