{"title":"Allogeneic transplantation across the HLA barriers.","authors":"F. Aversa, A. Tabilio, A. Velardi, M. Martelli","doi":"10.1046/J.1468-0734.2001.00037.X","DOIUrl":null,"url":null,"abstract":"In high-risk acute leukemia patients, a 10-fold increase in the dose of extensively T-cell-depleted hematopoietic stem cells ensures sustained full-donor engraftment of one-haplotype-mismatched transplants without graft-vs.-host disease. Since our first successful pilot study, which exploited the principle of a megadose stem cell transplant, our efforts have concentrated on developing new conditioning regimens, optimizing graft processing and improving the post-transplant immunologic recovery. The results so far achieved in more than 100 high-risk acute leukemia patients show that haploidentical transplantation is now a clinical reality. Because virtually all patients in need of a hematopoietic stem cell transplant have a full-haplotype-mismatched family donor, a T-cell-depleted mismatched transplant can be offered with curative intent, thus extending allogeneic transplantation procedures to virtually all candidates.","PeriodicalId":82483,"journal":{"name":"Reviews in clinical and experimental hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/J.1468-0734.2001.00037.X","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in clinical and experimental hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/J.1468-0734.2001.00037.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In high-risk acute leukemia patients, a 10-fold increase in the dose of extensively T-cell-depleted hematopoietic stem cells ensures sustained full-donor engraftment of one-haplotype-mismatched transplants without graft-vs.-host disease. Since our first successful pilot study, which exploited the principle of a megadose stem cell transplant, our efforts have concentrated on developing new conditioning regimens, optimizing graft processing and improving the post-transplant immunologic recovery. The results so far achieved in more than 100 high-risk acute leukemia patients show that haploidentical transplantation is now a clinical reality. Because virtually all patients in need of a hematopoietic stem cell transplant have a full-haplotype-mismatched family donor, a T-cell-depleted mismatched transplant can be offered with curative intent, thus extending allogeneic transplantation procedures to virtually all candidates.