{"title":"Secrets of image denoising cuisine*","authors":"M. Lebrun, M. Colom, A. Buades, J. Morel","doi":"10.1017/S0962492912000062","DOIUrl":null,"url":null,"abstract":"Digital images are matrices of equally spaced pixels, each containing a photon count. This photon count is a stochastic process due to the quantum nature of light. It follows that all images are noisy. Ever since digital images have existed, numerical methods have been proposed to improve the signal-to-noise ratio. Such ‘denoising’ methods require a noise model and an image model. It is relatively easy to obtain a noise model. As will be explained in the present paper, it is even possible to estimate it from a single noisy image.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"21 1","pages":"475 - 576"},"PeriodicalIF":16.3000,"publicationDate":"2012-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492912000062","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492912000062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 182
Abstract
Digital images are matrices of equally spaced pixels, each containing a photon count. This photon count is a stochastic process due to the quantum nature of light. It follows that all images are noisy. Ever since digital images have existed, numerical methods have been proposed to improve the signal-to-noise ratio. Such ‘denoising’ methods require a noise model and an image model. It is relatively easy to obtain a noise model. As will be explained in the present paper, it is even possible to estimate it from a single noisy image.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.