Analysis of Incomplete Data Using Inverse Probability Weighting and Doubly Robust Estimators

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
S. Vansteelandt, J. Carpenter, M. Kenward
{"title":"Analysis of Incomplete Data Using Inverse Probability Weighting and Doubly Robust Estimators","authors":"S. Vansteelandt, J. Carpenter, M. Kenward","doi":"10.1027/1614-2241/A000005","DOIUrl":null,"url":null,"abstract":"This article reviews inverse probability weighting methods and doubly robust estimation methods for the analysis of incomplete data sets. We first consider methods for estimating a population mean when the outcome is missing at random, in the sense that measured covariates can explain whether or not the outcome is observed. We then sketch the rationale of these methods and elaborate on their usefulness in the presence of influential inverse weights. We finally outline how to apply these methods in a variety of settings, such as for fitting regression models with incomplete outcomes or covariates, emphasizing the use of standard software programs.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"6 1","pages":"37-48"},"PeriodicalIF":2.0000,"publicationDate":"2010-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000005","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 86

Abstract

This article reviews inverse probability weighting methods and doubly robust estimation methods for the analysis of incomplete data sets. We first consider methods for estimating a population mean when the outcome is missing at random, in the sense that measured covariates can explain whether or not the outcome is observed. We then sketch the rationale of these methods and elaborate on their usefulness in the presence of influential inverse weights. We finally outline how to apply these methods in a variety of settings, such as for fitting regression models with incomplete outcomes or covariates, emphasizing the use of standard software programs.
利用逆概率加权和双鲁棒估计分析不完全数据
本文综述了用于不完全数据集分析的反概率加权方法和双鲁棒估计方法。当结果随机缺失时,我们首先考虑估计总体均值的方法,在某种意义上,测量的协变量可以解释是否观察到结果。然后,我们概述了这些方法的基本原理,并详细说明了它们在有影响的逆权重存在时的有用性。我们最后概述了如何在各种情况下应用这些方法,例如拟合具有不完整结果或协变量的回归模型,强调使用标准软件程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信