Joint Correspondence Analysis (JCA) by Maximum Likelihood

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
J. Vermunt, Carolyn J. Anderson
{"title":"Joint Correspondence Analysis (JCA) by Maximum Likelihood","authors":"J. Vermunt, Carolyn J. Anderson","doi":"10.1027/1614-1881.1.1.18","DOIUrl":null,"url":null,"abstract":"Abstract. Parameter estimation in joint correspondence analysis (JCA) is typically performed by weighted least squares using the Burt matrix as the data matrix. In this paper, we show how to estimate the JCA model by means of maximum likelihood. For that purpose, JCA is defined as a model for the full K-way distribution by generalizing the correspondence analysis model for three-way tables proposed by Choulakian (1988a, 1988b). The advantage of placing JCA in a more formal statistical framework is that standard chi-squared tests can be applied to assess the goodness-of-fit of unrestricted and restricted models.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"1 1","pages":"18-26"},"PeriodicalIF":2.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-1881.1.1.18","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract. Parameter estimation in joint correspondence analysis (JCA) is typically performed by weighted least squares using the Burt matrix as the data matrix. In this paper, we show how to estimate the JCA model by means of maximum likelihood. For that purpose, JCA is defined as a model for the full K-way distribution by generalizing the correspondence analysis model for three-way tables proposed by Choulakian (1988a, 1988b). The advantage of placing JCA in a more formal statistical framework is that standard chi-squared tests can be applied to assess the goodness-of-fit of unrestricted and restricted models.
最大似然联合对应分析
摘要联合对应分析(JCA)中的参数估计通常采用加权最小二乘方法,以Burt矩阵作为数据矩阵。在本文中,我们展示了如何用极大似然的方法来估计JCA模型。为此,通过推广Choulakian (1988a, 1988b)提出的三向表对应分析模型,将JCA定义为全k向分布的模型。将JCA置于更正式的统计框架中的优点是,可以应用标准卡方检验来评估不受限制和受限制模型的拟合优度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信