Herbicolin A production and its modulation by quorum sensing in a Pantoea agglomerans rhizobacterium bioactive against a broad spectrum of plant-pathogenic fungi
IF 4.8 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Miguel A. Matilla, Terry J. Evans, Jesús Martín, Zulema Udaondo, Cristina Lomas-Martínez, Míriam Rico-Jiménez, Fernando Reyes, George P. C. Salmond
{"title":"Herbicolin A production and its modulation by quorum sensing in a Pantoea agglomerans rhizobacterium bioactive against a broad spectrum of plant-pathogenic fungi","authors":"Miguel A. Matilla, Terry J. Evans, Jesús Martín, Zulema Udaondo, Cristina Lomas-Martínez, Míriam Rico-Jiménez, Fernando Reyes, George P. C. Salmond","doi":"10.1111/1751-7915.14193","DOIUrl":null,"url":null,"abstract":"<p>Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium <i>Pantoea agglomerans</i> 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of <i>P. agglomerans</i> 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"16 8","pages":"1690-1700"},"PeriodicalIF":4.8000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14193","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14193","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium Pantoea agglomerans 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of P. agglomerans 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes