C. Pacelli, A. Cassaro, M. Baqué, L. Selbmann, L. Zucconi, A. Maturilli, L. Botta, R. Saladino, U. Böttger, R. Demets, E. Rabbow, J. D. de Vera, S. Onofri
{"title":"Fungal biomarkers are detectable in Martian rock-analogues after space exposure: implications for the search of life on Mars","authors":"C. Pacelli, A. Cassaro, M. Baqué, L. Selbmann, L. Zucconi, A. Maturilli, L. Botta, R. Saladino, U. Böttger, R. Demets, E. Rabbow, J. D. de Vera, S. Onofri","doi":"10.1017/s1473550421000240","DOIUrl":null,"url":null,"abstract":"\n Mars is a primary target of astrobiological interest: its past environmental conditions may have been favourable to the emergence of a prebiotic chemistry and, potentially, biological activity. In situ exploration is currently underway at the Mars surface, and the subsurface (2 m depth) will be explored in the future ESA ExoMars mission. In this context, BIOlogy and Mars EXperiment was performed to evaluate the stability and detectability of organic biomarkers under space and Mars-like conditions. Our data suggested that some target molecules, namely melanin, azelaic acid and nucleic acids, can be detected even after 16 months exposure to Low Earth Orbit conditions by multidisciplinary approaches. We used the same techniques as onboard the ExoMars rover, as Raman and infrared spectroscopies and gas chromatograph-mass spectrometer, and polymerase chain reaction even if this is not planned for the imminent mission to Mars. These results should be taken into account for future Mars exploration.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550421000240","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 7
Abstract
Mars is a primary target of astrobiological interest: its past environmental conditions may have been favourable to the emergence of a prebiotic chemistry and, potentially, biological activity. In situ exploration is currently underway at the Mars surface, and the subsurface (2 m depth) will be explored in the future ESA ExoMars mission. In this context, BIOlogy and Mars EXperiment was performed to evaluate the stability and detectability of organic biomarkers under space and Mars-like conditions. Our data suggested that some target molecules, namely melanin, azelaic acid and nucleic acids, can be detected even after 16 months exposure to Low Earth Orbit conditions by multidisciplinary approaches. We used the same techniques as onboard the ExoMars rover, as Raman and infrared spectroscopies and gas chromatograph-mass spectrometer, and polymerase chain reaction even if this is not planned for the imminent mission to Mars. These results should be taken into account for future Mars exploration.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.