A. Huckenpahler, M. Wilk, R. F. Cooper, Francie Moehring, B. Link, J. Carroll, Ross F. Collery
{"title":"Imaging the adult zebrafish cone mosaic using optical coherence tomography","authors":"A. Huckenpahler, M. Wilk, R. F. Cooper, Francie Moehring, B. Link, J. Carroll, Ross F. Collery","doi":"10.1017/S0952523816000092","DOIUrl":null,"url":null,"abstract":"Abstract Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics.","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523816000092","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523816000092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.