{"title":"A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems","authors":"Xiao-Jun TANG , Jian-Li WEI , Kai CHEN","doi":"10.1016/S1874-1029(15)30004-5","DOIUrl":null,"url":null,"abstract":"<div><p>A pseudospectral method is presented for direct trajectory optimization of optimal control problems using collocation at Chebyshev-Gauss points, and therefore, it is called Chebyshev-Gauss pseudospectral method. The costate and constraint multiplier estimates for the proposed method are rigorously derived by comparing the discretized optimality conditions of an optimal control problem with the Karush-Kuhn-Tucker conditions of the resulting nonlinear programming problem from collocation. The distinctive advantages of the proposed method over other pseudopsectral methods are the good numerical stability and computational efficiency. In order to achieve this goal, the barycentric Lagrange interpolation is substituted for the classic Lagrange interpolation in the state approximation. Furthermore, a simple yet efficient method is presented to alleviate the numerical errors of state differential matrix using the trigonometric identity especially when the number of Chebyshev-Gauss points is large. The method presented in this paper has been taken to two optimal control problems from the open literature, and the results have indicated its ability to obtain accurate solutions to complex constrained optimal control problems.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"41 10","pages":"Pages 1778-1787"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(15)30004-5","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102915300045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9
Abstract
A pseudospectral method is presented for direct trajectory optimization of optimal control problems using collocation at Chebyshev-Gauss points, and therefore, it is called Chebyshev-Gauss pseudospectral method. The costate and constraint multiplier estimates for the proposed method are rigorously derived by comparing the discretized optimality conditions of an optimal control problem with the Karush-Kuhn-Tucker conditions of the resulting nonlinear programming problem from collocation. The distinctive advantages of the proposed method over other pseudopsectral methods are the good numerical stability and computational efficiency. In order to achieve this goal, the barycentric Lagrange interpolation is substituted for the classic Lagrange interpolation in the state approximation. Furthermore, a simple yet efficient method is presented to alleviate the numerical errors of state differential matrix using the trigonometric identity especially when the number of Chebyshev-Gauss points is large. The method presented in this paper has been taken to two optimal control problems from the open literature, and the results have indicated its ability to obtain accurate solutions to complex constrained optimal control problems.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.