{"title":"Data Driven Hierarchical Serial Scene Classification Framework","authors":"Wen-Gang FENG","doi":"10.1016/S1874-1029(14)60008-2","DOIUrl":null,"url":null,"abstract":"<div><p>Scene classification is a complicated task, because it includes much content and it is difficult to capture its distribution. A novel hierarchical serial scene classification framework is presented in this paper. At first, we use hierarchical feature to present both the global scene and local patches containing specific objects. Hierarchy is presented by space pyramid match, and our own codebook is built by two different types of words. Secondly, we train the visual words by generative and discriminative methods respectively based on space pyramid match, which could obtain the local patch labels efficiently. Then, we use a neural network to simulate the human decision process, which leads to the final scene category from local labels. Experiments show that the hierarchical serial scene image representation and classification model obtains superior results with respect to accuracy.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 4","pages":"Pages 763-770"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60008-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Scene classification is a complicated task, because it includes much content and it is difficult to capture its distribution. A novel hierarchical serial scene classification framework is presented in this paper. At first, we use hierarchical feature to present both the global scene and local patches containing specific objects. Hierarchy is presented by space pyramid match, and our own codebook is built by two different types of words. Secondly, we train the visual words by generative and discriminative methods respectively based on space pyramid match, which could obtain the local patch labels efficiently. Then, we use a neural network to simulate the human decision process, which leads to the final scene category from local labels. Experiments show that the hierarchical serial scene image representation and classification model obtains superior results with respect to accuracy.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.