Maria Sarno, Diana Sannino, Caterina Leone, Paolo Ciambelli
{"title":"CNTs tuning and vertical alignment in anodic aluminium oxide membrane","authors":"Maria Sarno, Diana Sannino, Caterina Leone, Paolo Ciambelli","doi":"10.1016/S1003-9953(11)60413-1","DOIUrl":null,"url":null,"abstract":"<div><p>Anodic aluminium oxide (AAOM) membranes were used for template growth of carbon nanotubes (CNT) inside their pores by chemical vapour deposition (CVD) of different hydrocarbons, in the absence of transition metal catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and the external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity, and quality of CNTs in terms of diameter (up to very thin CNT), carbon order, length, arrangement (i.e. number of tubes for each channel), purity, that are critical requisites for several applications were optimized by investigating the effect of changing the hydrocarbon feedstock gas, also in the presence of hydrogen. The samples produced using methane as a feedstock have a well ordered structure. The role of the alumina channels surface during the CNT growth has been investigated and its catalytic activity has been proved for the first time.</p></div>","PeriodicalId":56116,"journal":{"name":"Journal of Natural Gas Chemistry","volume":"21 6","pages":"Pages 639-646"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1003-9953(11)60413-1","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003995311604131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Anodic aluminium oxide (AAOM) membranes were used for template growth of carbon nanotubes (CNT) inside their pores by chemical vapour deposition (CVD) of different hydrocarbons, in the absence of transition metal catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and the external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity, and quality of CNTs in terms of diameter (up to very thin CNT), carbon order, length, arrangement (i.e. number of tubes for each channel), purity, that are critical requisites for several applications were optimized by investigating the effect of changing the hydrocarbon feedstock gas, also in the presence of hydrogen. The samples produced using methane as a feedstock have a well ordered structure. The role of the alumina channels surface during the CNT growth has been investigated and its catalytic activity has been proved for the first time.