Comparing input interfaces to elicit belief distributions

IF 1.9 3区 心理学 Q2 PSYCHOLOGY, MULTIDISCIPLINARY
Paolo Crosetto, Thomas de Haan
{"title":"Comparing input interfaces to elicit belief distributions","authors":"Paolo Crosetto, Thomas de Haan","doi":"10.1017/jdm.2023.21","DOIUrl":null,"url":null,"abstract":"This paper introduces a new software interface to elicit belief distributions of any shape: Click-and-Drag. The interface was tested against the state of the art in the experimental literature—a text-based interface and multiple sliders—and in the online forecasting industry—a distribution-manipulation interface similar to the one used by the most popular crowd-forecasting website. By means of a pre-registered experiment on Amazon Mechanical Turk, quantitative data on the accuracy of reported beliefs in a series of induced-value scenarios varying by granularity, shape, and time constraints, as well as subjective data on user experience were collected. Click-and-Drag outperformed all other interfaces by accuracy and speed, and was self-reported as being more intuitive and less frustrating, confirming the pre-registered hypothesis. Aside of the pre-registered results, Click-and-Drag generated the least drop-out rate from the task, and scored best in a sentiment analysis of an open-ended general question. Further, the interface was used to collect homegrown predictions on temperature in New York City in 2022 and 2042. Click-and-Drag elicited distributions were smoother with less idiosyncratic spikes. Free and open source, ready to use oTree, Qualtrics and Limesurvey plugins for Click-and-Drag, and all other tested interfaces are available at https://beliefelicitation.github.io/.","PeriodicalId":48045,"journal":{"name":"Judgment and Decision Making","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Judgment and Decision Making","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/jdm.2023.21","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a new software interface to elicit belief distributions of any shape: Click-and-Drag. The interface was tested against the state of the art in the experimental literature—a text-based interface and multiple sliders—and in the online forecasting industry—a distribution-manipulation interface similar to the one used by the most popular crowd-forecasting website. By means of a pre-registered experiment on Amazon Mechanical Turk, quantitative data on the accuracy of reported beliefs in a series of induced-value scenarios varying by granularity, shape, and time constraints, as well as subjective data on user experience were collected. Click-and-Drag outperformed all other interfaces by accuracy and speed, and was self-reported as being more intuitive and less frustrating, confirming the pre-registered hypothesis. Aside of the pre-registered results, Click-and-Drag generated the least drop-out rate from the task, and scored best in a sentiment analysis of an open-ended general question. Further, the interface was used to collect homegrown predictions on temperature in New York City in 2022 and 2042. Click-and-Drag elicited distributions were smoother with less idiosyncratic spikes. Free and open source, ready to use oTree, Qualtrics and Limesurvey plugins for Click-and-Drag, and all other tested interfaces are available at https://beliefelicitation.github.io/.
比较输入接口以引出信念分布
本文介绍了一种新的软件界面,以获得任何形状的信念分布:点击和拖动。这个界面是针对实验文献中最先进的技术——基于文本的界面和多个滑块——以及在线预测行业中的分布操纵界面进行测试的——类似于最流行的人群预测网站所使用的界面。通过在Amazon Mechanical Turk上进行预注册实验,收集了一系列不同粒度、形状和时间约束的诱导值场景中报告信念准确性的定量数据,以及用户体验的主观数据。点击-拖动界面在准确性和速度上都优于其他所有界面,而且自述更直观,更不令人沮丧,证实了之前的假设。除了预先登记的结果外,点击-拖动产生的任务退出率最低,并且在开放式一般问题的情绪分析中得分最高。此外,该界面还用于收集纽约市2022年和2042年的本地温度预测。点击-拖动引发的分布更平滑,没有那么特殊的峰值。免费和开源,随时可以使用oTree, qualics和Limesurvey插件的点击和拖动,以及所有其他测试界面可在https://beliefelicitation.github.io/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Judgment and Decision Making
Judgment and Decision Making PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
4.40
自引率
8.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信