Algebraic K-Theory of ∞-Operads

T. Nikolaus
{"title":"Algebraic K-Theory of ∞-Operads","authors":"T. Nikolaus","doi":"10.1017/IS014008019JKT277","DOIUrl":null,"url":null,"abstract":"The theory of dendroidal sets has been developed to serve as a combinatorial model for homotopy coherent operads, see [MW07, CM13b]. An ∞-operad is a dendroidal set D satisfying certain lifting conditions.\nIn this paper we give a definition of K-groups Kn (D) for a dendroidal set D. These groups generalize the K-theory of symmetric monoidal (resp. permutative) categories and algebraic K-theory of rings. We establish some useful properties like invariance under the appropriate equivalences and long exact sequences which allow us to compute these groups in some examples. Using results from [Heu11b] and [BN12] we show that the K-theory groups of D can be realized as homotopy groups of a K-theory spectrum .","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"614-641"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS014008019JKT277","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS014008019JKT277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The theory of dendroidal sets has been developed to serve as a combinatorial model for homotopy coherent operads, see [MW07, CM13b]. An ∞-operad is a dendroidal set D satisfying certain lifting conditions. In this paper we give a definition of K-groups Kn (D) for a dendroidal set D. These groups generalize the K-theory of symmetric monoidal (resp. permutative) categories and algebraic K-theory of rings. We establish some useful properties like invariance under the appropriate equivalences and long exact sequences which allow us to compute these groups in some examples. Using results from [Heu11b] and [BN12] we show that the K-theory groups of D can be realized as homotopy groups of a K-theory spectrum .
∞-操作数的代数k理论
树突集理论已经发展成为同伦相干操作数的组合模型,参见[MW07, CM13b]。∞算子是满足一定提升条件的枝状集D。本文给出了树形集D的k群Kn (D)的定义,这些群推广了对称单形集的k理论。环的置换范畴和代数k理论。我们建立了一些有用的性质,如适当等价下的不变性和长精确序列,使我们能够在一些例子中计算这些群。利用[Heu11b]和[BN12]的结果,我们证明了D的k理论群可以被实现为k理论谱的同伦群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信