K-theory, reality, and duality

Drew Heard, Vesna Stojanoska
{"title":"K-theory, reality, and duality","authors":"Drew Heard, Vesna Stojanoska","doi":"10.1017/is014007001jkt275","DOIUrl":null,"url":null,"abstract":"We present a new proof of Anderson's result that the real K -theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K -theory spectrum KU is C 2 -equivariantly equivalent to Σ 4 KU , where C 2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K (1)-local Picard group.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"526-555"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014007001jkt275","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014007001jkt275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We present a new proof of Anderson's result that the real K -theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K -theory spectrum KU is C 2 -equivariantly equivalent to Σ 4 KU , where C 2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K (1)-local Picard group.
k理论,实在性和对偶性
我们给出了一个新的证明,证明了实K理论谱是安德森自对偶,直至四倍悬移;更强的是,我们证明了复K理论谱KU的Anderson对偶是c2 -等价于Σ 4 KU,其中c2通过复共轭作用。我们给出了这一结果在谱推导代数几何中的代数-几何解释,并将结果应用于计算高度为1的二初级Gross-Hopkins对偶。由后者得到了K(1)-局部Picard群的奇异元群的一种新的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信