Hochster's theta pairing and numerical equivalence

Hailong Dao, Kazuhiko Kurano
{"title":"Hochster's theta pairing and numerical equivalence","authors":"Hailong Dao, Kazuhiko Kurano","doi":"10.1017/IS014006030JKT273","DOIUrl":null,"url":null,"abstract":"Let ( A , ) be a local hypersurface with an isolated singularity. We show that Hochster's theta pairing θ A vanishes on elements that are numerically equivalent to zero in the Grothendieck group of A under the mild assumption that Spec A admits a resolution of singularities. This extends a result by Celikbas-Walker. We also prove that when dim A = 3, Hochster's theta pairing is positive semi-definite. These results combine to show that the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of Serre's intersection multiplicity exists for any three dimensional isolated hypersurface singularity that is not a UFD and has a desingularization. We also show that, if A is three dimensional isolated hypersurface singularity that has a desingularization, the divisor class group is finitely generated torsion-free. Our method involves showing that θ A gives a bivariant class for the morphism Spec ( A / ) → Spec A .","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"495-525"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS014006030JKT273","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS014006030JKT273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Let ( A , ) be a local hypersurface with an isolated singularity. We show that Hochster's theta pairing θ A vanishes on elements that are numerically equivalent to zero in the Grothendieck group of A under the mild assumption that Spec A admits a resolution of singularities. This extends a result by Celikbas-Walker. We also prove that when dim A = 3, Hochster's theta pairing is positive semi-definite. These results combine to show that the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of Serre's intersection multiplicity exists for any three dimensional isolated hypersurface singularity that is not a UFD and has a desingularization. We also show that, if A is three dimensional isolated hypersurface singularity that has a desingularization, the divisor class group is finitely generated torsion-free. Our method involves showing that θ A gives a bivariant class for the morphism Spec ( A / ) → Spec A .
霍赫斯特配对和数值等价
设(A,)为具有孤立奇点的局部超曲面。我们证明了Hochster的θ对θ A在A的Grothendieck群中在数值上等于零的元素上消失,假设Spec A允许奇点的分辨。这扩展了Celikbas-Walker的一个结果。我们还证明了当dim A = 3时,Hochster配对是正半定的。这些结果结合起来表明,对于任何非UFD且具有非具体化的三维孤立超曲面奇点,存在Dutta-Hochster-McLaughlin关于Serre相交多重性一般消失的反例。我们还证明,如果A是具有去奇异性的三维孤立超曲面奇点,则除数类群是有限生成的无扭转。我们的方法是证明θ A给出了态射Spec (A /)→Spec A的一个双变类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信