{"title":"Twisted Witt Groups of Flag Varieties","authors":"Marcus Zibrowius","doi":"10.1017/is014003028jkt260","DOIUrl":null,"url":null,"abstract":"Calmes and Fasel have shown that the twisted Witt groups of split flag varieties vanish in a large number of cases. For flag varieties over algebraically closed fields, we sharpen their result to an if-and-only-if statement. In particular, we show that the twisted Witt groups vanish in many previously unknown cases. In the non-zero cases, we find that the twisted total Witt group forms a free module of rank one over the untwisted total Witt group, up to a difference in grading. Our proof relies on an identification of the Witt groups of flag varieties with the Tate cohomology groups of their K-groups, whereby the verification of all assertions is eventually reduced to the computation of the (twisted) Tate cohomology of the representation ring of a parabolic subgroup.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"139-184"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014003028jkt260","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014003028jkt260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Calmes and Fasel have shown that the twisted Witt groups of split flag varieties vanish in a large number of cases. For flag varieties over algebraically closed fields, we sharpen their result to an if-and-only-if statement. In particular, we show that the twisted Witt groups vanish in many previously unknown cases. In the non-zero cases, we find that the twisted total Witt group forms a free module of rank one over the untwisted total Witt group, up to a difference in grading. Our proof relies on an identification of the Witt groups of flag varieties with the Tate cohomology groups of their K-groups, whereby the verification of all assertions is eventually reduced to the computation of the (twisted) Tate cohomology of the representation ring of a parabolic subgroup.