{"title":"Twisted K-theory and obstructions against positive scalar curvature metrics","authors":"U. Pennig","doi":"10.1017/is014003008jkt259","DOIUrl":null,"url":null,"abstract":"We decompose θ(M), the twisted index obstruction to a positive scalar curvature metric for closed oriented manifolds with spin universal cover, into a pairing of a twisted K-homology with a twisted K-theory class and prove that θ(M) does not vanish if M is a closed orientable enlargeable manifold with spin universal cover.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"47-71"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014003008jkt259","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014003008jkt259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We decompose θ(M), the twisted index obstruction to a positive scalar curvature metric for closed oriented manifolds with spin universal cover, into a pairing of a twisted K-homology with a twisted K-theory class and prove that θ(M) does not vanish if M is a closed orientable enlargeable manifold with spin universal cover.