On λ-invariants of number fields and étale cohomology

M. Kolster, A. Movahhedi
{"title":"On λ-invariants of number fields and étale cohomology","authors":"M. Kolster, A. Movahhedi","doi":"10.1017/IS013005031JKT227","DOIUrl":null,"url":null,"abstract":"For an odd prime p we prove a Riemann-Hurwitz type formula for odd eigenspaces of the standard Iwasawa modules over F ( μ p ∞), the field obtained from a totally real number field F by adjoining all p -power roots of unity. We use a new approach based on the relationship between eigenspaces and etale cohomology groups over the cyclotomic ℤ p -extension F ∞ of F . The systematic use of etale cohomology greatly simplifies the proof and allows to generalize the classical result about the minus-eigenspace to all odd eigenspaces.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"12 1","pages":"167-181"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013005031JKT227","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013005031JKT227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For an odd prime p we prove a Riemann-Hurwitz type formula for odd eigenspaces of the standard Iwasawa modules over F ( μ p ∞), the field obtained from a totally real number field F by adjoining all p -power roots of unity. We use a new approach based on the relationship between eigenspaces and etale cohomology groups over the cyclotomic ℤ p -extension F ∞ of F . The systematic use of etale cohomology greatly simplifies the proof and allows to generalize the classical result about the minus-eigenspace to all odd eigenspaces.
关于数域的λ不变量与上同调
对于奇素数p,我们证明了F (μ p∞)上标准Iwasawa模的奇特征空间的Riemann-Hurwitz型公式,该域由全实数域F通过连接所有p幂根得到。我们利用了一种新的方法,该方法基于环环上的特征空间与上同调群之间的关系,即F的p扩展F∞。系统地使用上同调极大地简化了证明,并将关于负特征空间的经典结果推广到所有奇特征空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信