On a local to global principle in étale K-groups of curves

Grzegorz Banaszak, P. Krasoń
{"title":"On a local to global principle in étale K-groups of curves","authors":"Grzegorz Banaszak, P. Krasoń","doi":"10.1017/IS013003030JKT13223","DOIUrl":null,"url":null,"abstract":"Let X be a smooth, proper and geometrically irreducible curve X defined over a number field F and let X be a regular and proper model of X over OF;Sl : In this paper we address the problem of detecting the linear dependence over Zl of elements in the etale K-theory of X : To be more specific, let P 2Ket 2n.X / and let O ƒ K 2n.X / be a Zl -submodule. Let rv W K 2n.X /! K 2n.Xv/ be the reduction map for v ... Sl . We prove, under some conditions on X; that if rv. O P / 2 rv. O ƒ/ for almost all v of OF;Sl then O P 2 O ƒCKet 2n.X /tor :","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"12 1","pages":"183-201"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013003030JKT13223","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013003030JKT13223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let X be a smooth, proper and geometrically irreducible curve X defined over a number field F and let X be a regular and proper model of X over OF;Sl : In this paper we address the problem of detecting the linear dependence over Zl of elements in the etale K-theory of X : To be more specific, let P 2Ket 2n.X / and let O ƒ K 2n.X / be a Zl -submodule. Let rv W K 2n.X /! K 2n.Xv/ be the reduction map for v ... Sl . We prove, under some conditions on X; that if rv. O P / 2 rv. O ƒ/ for almost all v of OF;Sl then O P 2 O ƒCKet 2n.X /tor :
关于曲线k群的局部到全局原理
设X是定义在数域F上的一条光滑的、固有的、几何上不可约的曲线X,设X是X在of上的一个正则的、固有的模型;Sl:本文研究了X的正则k理论中元素在Zl上的线性相关性的检测问题,更具体地说,设P 2Ket 2n。X /设0乘以k2n。X /是Zl -子模块。让rv wk2n。X / !K 2 n。Xv/是v的还原图…Sl。我们证明,在X的某些条件下;这是rv。O P / 2rv。对于几乎所有的v (of)都是O f /,然后O P 2 O ƒCKet 2n。X /tor:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信