{"title":"Geometric K-homology with coefficients II: The Analytic Theory and Isomorphism","authors":"R. Deeley","doi":"10.1017/IS013007003JKT235","DOIUrl":null,"url":null,"abstract":"We discuss the analytic aspects of the geometric model for Khomology with coefficients in Z/kZ constructed in [11]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"12 1","pages":"235-256"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013007003JKT235","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013007003JKT235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We discuss the analytic aspects of the geometric model for Khomology with coefficients in Z/kZ constructed in [11]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.