Tame kernels and second regulators of number fields and their subfields

J. Browkin, H. Gangl
{"title":"Tame kernels and second regulators of number fields and their subfields","authors":"J. Browkin, H. Gangl","doi":"10.1017/IS013005031JKT229","DOIUrl":null,"url":null,"abstract":"Assuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D 2 p ; p an odd prime, or the alternating group A 4 . We include numerical results illustrating these formulas.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"12 1","pages":"137-165"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013005031JKT229","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013005031JKT229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Assuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D 2 p ; p an odd prime, or the alternating group A 4 . We include numerical results illustrating these formulas.
数域及其子域的驯服核和第二调节器
假设Lichtenbaum猜想的一个版本,我们应用数域的Dedekind zeta函数与若干子域的zeta函数之间的Brauer-Kuroda关系,证明了数域F的驯服核阶与其若干子域的驯服核阶之间的关系式。给出了域F的细节,该域是伽罗瓦在π上的伽罗瓦群,群,也就是群,也就是二面体群D 2p;p是奇素数,或者是交替群4a。我们包括数值结果来说明这些公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信