{"title":"Homology stability for unitary groups over S-arithmetic rings","authors":"Gael Collinet","doi":"10.1017/IS010010004JKT123","DOIUrl":null,"url":null,"abstract":"We prove that the homology of unitary groups over rings of S-integers in number fields stabilizes. Results of this kind are well known to follow from the high acyclicity of ad-hoc polyhedra. Given this, we exhibit two simple conditions on the arithmetic of hermitian forms over a ring A relatively to an antiautomorphism which, if they are satisfied, imply the stabilization of the homology of the corresponding unitary groups. When R is a ring of S-integers in a number field K, and A is a maximal R-order in an associative composition algebra F over K, we use the strong approximation theorem to show that both of these properties are satisfied. Finally we take a closer look at the case of On(Z[ 1 2 ]).","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"8 1","pages":"293-322"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS010010004JKT123","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS010010004JKT123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We prove that the homology of unitary groups over rings of S-integers in number fields stabilizes. Results of this kind are well known to follow from the high acyclicity of ad-hoc polyhedra. Given this, we exhibit two simple conditions on the arithmetic of hermitian forms over a ring A relatively to an antiautomorphism which, if they are satisfied, imply the stabilization of the homology of the corresponding unitary groups. When R is a ring of S-integers in a number field K, and A is a maximal R-order in an associative composition algebra F over K, we use the strong approximation theorem to show that both of these properties are satisfied. Finally we take a closer look at the case of On(Z[ 1 2 ]).