{"title":"A Fundamental Property of Suslin Matrices","authors":"Selby Jose, R. A. Rao","doi":"10.1017/IS010005001JKT101","DOIUrl":null,"url":null,"abstract":"We describe a homomorphism from the group SUmr (R), generated by Suslin matrices, when r is even, to the special orthogonal group SO2(r+1) (R) by relating the Suslin matrix corresponding to a pair of vectors v, w, with 〈v, w〉 = 1, to the product of two reflections, one w.r.t. the vectors v, w and the other w.r.t. the vectors e1, e1 (of length one). When r is odd we can still associate a product of reflections with an element of SUmr (R), which is well defined up to a unit u, with u2 = 1. This association enables one to study the orbit space of unimodular vectors under the elementary subgroup.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"5 1","pages":"407-436"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS010005001JKT101","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS010005001JKT101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We describe a homomorphism from the group SUmr (R), generated by Suslin matrices, when r is even, to the special orthogonal group SO2(r+1) (R) by relating the Suslin matrix corresponding to a pair of vectors v, w, with 〈v, w〉 = 1, to the product of two reflections, one w.r.t. the vectors v, w and the other w.r.t. the vectors e1, e1 (of length one). When r is odd we can still associate a product of reflections with an element of SUmr (R), which is well defined up to a unit u, with u2 = 1. This association enables one to study the orbit space of unimodular vectors under the elementary subgroup.