Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer

IF 4.8 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liuyan Gu, Xinxin Xiao, Ge Zhao, Paul Kempen, Shuangqing Zhao, Jianming Liu, Sang Yup Lee, Christian Solem
{"title":"Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer","authors":"Liuyan Gu,&nbsp;Xinxin Xiao,&nbsp;Ge Zhao,&nbsp;Paul Kempen,&nbsp;Shuangqing Zhao,&nbsp;Jianming Liu,&nbsp;Sang Yup Lee,&nbsp;Christian Solem","doi":"10.1111/1751-7915.14229","DOIUrl":null,"url":null,"abstract":"<p><i>Lactococcus lactis</i>, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that <i>L. lactis</i> blocked in NAD<sup>+</sup> regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on <i>L. lactis</i>, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"16 6","pages":"1277-1292"},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ami-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14229","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14229","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.

重组乳酸乳球菌的呼吸通路以增强细胞外电子转移
乳酸乳球菌是一种具有典型发酵代谢的乳酸菌,它也可以利用氧气作为细胞外电子受体。在这里,我们首次证明了在NAD+再生中受阻的乳杆菌可以使用替代电子受体铁氰化物来支持生长。通过对携带呼吸链突变菌株的电化学分析和表征,我们确定了NADH脱氢酶和2-氨基-3-羧基-1,4-萘醌在细胞外电子转移(EET)中的重要作用,并系统地揭示了潜在的途径。铁氰化物呼吸作用对乳酸乳杆菌有意想不到的影响,例如,我们发现乳酸乳杆菌的形态从正常的球形改变为更棒的形状,并且耐酸能力增强。利用自适应实验室进化(ALE)技术,我们成功地增强了EET的能力。全基因组测序揭示了观察到的EET能力增强的潜在原因是甲基萘醌生物合成的后期阻断。研究的角度很多,特别是在食品发酵和微生物组工程中,EET可以帮助缓解氧化应激,促进氧敏感微生物的生长,并在形成微生物群落中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
9.80
自引率
3.50%
发文量
162
审稿时长
6-12 weeks
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信